Theory of Bergman Spaces in the Unit Ball of n
Mémoires de la Société Mathématique de France, no. 115 (2008) , 109 p.

There has been a great deal of work done in recent years on weighted Bergman spaces A α p on the unit ball 𝔹 n of n , where 0<p< and α>-1. We extend this study in a very natural way to the case where α is any real number and 0<p. This unified treatment covers all classical Bergman spaces, Besov spaces, Lipschitz spaces, the Bloch space, the Hardy space H 2 , and the so-called Arveson space. Some of our results about integral representations, complex interpolation, coefficient multipliers, and Carleson measures are new even for the ordinary (unweighted) Bergman spaces of the unit disk.

Ces dernières années il y a eu un grand nombre de travaux sur les espaces de Bergman pondérés A α p sur la boule unité 𝔹 n de n , où 0<p< et α>-1. Nous étendons cette étude, de manière très naturelle, au cas où α est un nombre réel quelconque et 0<p. Ce traitement unifié couvre tous les espaces de Bergman classiques, les espaces de Bésov, de Lipschitz, l’espace de Bloch, l’espace H 2 de Hardy, et celui appelé espace d’Arveson. Certains de nos résultats autour de la représentation entière, de l’interpolation complexe, des multiplicateurs de coefficients et des mesures de Carleson, sont nouveaux, y compris pour les espaces de Bergman ordinaires (non-pondérés) sur le disque unité.

DOI : https://doi.org/10.24033/msmf.427
Classification:  32A36,  32A18
Keywords: Unit ball, Bergman space, Lipschitz space, Bloch space, Arveson space, Besov space, Carleson measure, fractional derivative, integral representation, atomic decomposition, complex interpolation, coefficient multiplier
@book{MSMF_2008_2_115__1_0,
     author = {Zhao, Ruhan and Zhu, Kehe},
     title = {Theory of Bergman Spaces in the Unit Ball of ${\mathbb{C}}^n$},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {115},
     year = {2008},
     doi = {10.24033/msmf.427},
     zbl = {1176.32001},
     mrnumber = {2537698},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2008_2_115__1_0}
}
Zhao, Ruhan; Zhu, Kehe. Theory of Bergman Spaces in the Unit Ball of ${\mathbb{C}}^n$. Mémoires de la Société Mathématique de France, Serie 2, , no. 115 (2008), 109 p. doi : 10.24033/msmf.427. http://www.numdam.org/item/MSMF_2008_2_115__1_0/

[1] P. Ahern & W. Cohn« Besov spaces, Sobolev spaces and Cauchy integrals », Michigan Math. J. 39 (1972), p. 239–261. | MR 1162034 | Zbl 0767.46022

[2] A. AleksandrovFunction theory in the unit ball, Several Complex Variables II, G.M. Khenkin and A.G. Vitushkin, ed., Springer, 1994.

[3] J. Anderson, J. Clunie & C. Pommerenke« On Bloch functions and normal functions », J. reine angew. Math. 270, p. 12–37. | MR 361090 | Zbl 0292.30030

[4] J. Arazy, S. Fisher, S. Janson & J. Peetre« Membership of Hankel operators on the ball in unitary ideals », J. London Math. Soc. 43 (1991), p. 485–508. | MR 1113389 | Zbl 0747.47019

[5] N. Arcozzi« Carleson measures for analytic Besov spaces: the upper triangle case »,, J. Inequal. Pure Appl. Math., 6 (2005) no. 1, Art. 13. | MR 2122940 | Zbl 1127.30313

[6] N. Arcozzi, R. Rochberg & E. Sawyer« Carleson measures for analytic Besov spaces », Rev. Mat. Iberoamericana 18 (2002), p. 443–510. | MR 1949836 | Zbl 1059.30051

[7] —, Carleson measures and interpolating sequences for Besov spaces on complex balls, Memoirs Amer. Math. Soc., vol. 859, 2006. | Zbl 1112.46027

[8] W. Arveson« Subalgebras of C * -algebras III, multivariable operator theory », Acta Math. 181 (1998), p. 159–228. | MR 1668582 | Zbl 0952.46035

[9] F. Beatrous« Estimates for derivatives of holomorphic functions in pseudoconvex domains », Math. Z. 191 (1986), p. 91–116. | MR 812605 | Zbl 0596.32005

[10] F. Beatrous & J. Burbea« Characterizations of spaces of holomorphic functions in the ball », Kodai Math. J. 8 (1985), p. 36–51. | MR 776705 | Zbl 0571.32005

[11] —, Holomorphic Sobolev spaces on the ball, Dissertationes Math., Warszawa, vol. 276, 1989.

[12] J. Bennet, D. Stegenga & R. Timoney« Coefficients of Bloch and Lipschitz functions », Illinois J. Math. 25 (1981), p. 520–531. | MR 620437 | Zbl 0443.30041

[13] C. Bennett & R. SharpleyInterpolation of Operators, Academic Press, New York, 1988. | MR 928802 | Zbl 0647.46057

[14] J. Bergh & J. LöfströmInterpolation Spaces: An Introduction, Grundlehrem, vol. 223, Springer, Berlin, 1976. | MR 482275 | Zbl 0344.46071

[15] L. Carleson« An interpolation problem for bounded analytic functions », Amer. J. Math. 80 (1958), p. 921–930. | MR 117349 | Zbl 0085.06504

[16] —, « Interpolation by analytic functions and the corona problem », Ann. Math. 76 (1962), p. 547–559. | Zbl 0112.29702

[17] X. Chen & K. GuoAnalytic Hilbert Modules, Chapman Hall/CRC Press, Boca Raton, 2003. | MR 1988884

[18] B. R. Choe« Projections, the weighted Bergman spaces and the Bloch space », Proc. Amer. Math. Soc. 108 (1990), p. 127–136. | MR 991692 | Zbl 0684.47022

[19] B. R. Choe, H. Koo & H. Yi« Positive Toeplitz operators between harmonic Bergman spaces », Potential Anal. 17 (2002), p. 307–335. | MR 1918239 | Zbl 1014.47014

[20] J. Cima & W. Wogen« A Carleson measure theorem for the Bergman space of the ball », J. Operator Theory 7 (1982), p. 157–165. | MR 650200 | Zbl 0499.42011

[21] R. Coifman & R. Rochberg« Representation theorems for holomorphic and harmonic functions », Astérisque 77 (1980), p. 11–66. | MR 604369 | Zbl 0472.46040

[22] R. Coifman, R. Rochberg & G. Weiss« Factorization theorems for Hardy spaces of several complex variables », Ann. Math. 103 (1976), p. 611–635. | MR 412721 | Zbl 0326.32011

[23] P. DurenTheory of H p Spaces, Academic Press, New York, 1970. | MR 268655

[24] P. Duren, B. Romberg & A. Shields« Linear functionals on H p spaces with 0<p<1 », J. reine angew. Math. 238 (1969), p. 32–60. | MR 259579 | Zbl 0176.43102

[25] F. Forelli & W. Rudin« Projections on spaces of holomorphic functions on balls », Indiana Univ. Math. J. 24 (1974), p. 593–602. | MR 357866 | Zbl 0297.47041

[26] M. Frazier & B. Jawerth« Decomposition of Besov spaces », Indiana Univ. Math. J. 34 (1985), p. 777–799. | MR 808825 | Zbl 0551.46018

[27] J. GarnettBounded Analytic Functions, Academic Press, New York, 1981. | MR 628971 | Zbl 0469.30024

[28] I. Graham« The radial derivative, fractional integrals and the comparative growth of means of holomorphic functions on the unit ball in n », in Recent Developments in Several Complex Variables, vol. 100, Ann. Math. Studies, 1981, p. 171–178. | MR 627757

[29] K. T. Hahn & E. H. Youssfi« M-harmonic Besov spaces and Hankel operators on the Bergman space on ball of n », Manuscripta Math. 71 (1991), p. 67–81. | MR 1094739 | Zbl 0816.31004

[30] —, « Möbius invariant Besov spaces and Hankel operators on the Bergman spaces on the unit ball », Complex Variables 17 (1991), p. 89–104. | Zbl 0706.47017

[31] W. Hastings« A Carleson measure theorem for Bergman spaces », Proc. Amer. Math. Soc. 52 (1975), p. 237–241. | MR 374886 | Zbl 0296.31009

[32] L. Hörmander« L p estimates for (pluri-)subharmonic functions », Math. Scand. 20 (1967), p. 65–78. | MR 234002 | Zbl 0156.12201

[33] T. Kaptanoglu« Besov spaces and Bergman projections on the ball », C.R. Acad. Sci. Paris, Sér. I 335 (2002), p. 729–732. | MR 1951806 | Zbl 1029.32002

[34] —, « Bergman projections on Besov spaces on balls », Illinois J. Math. 49 (2005), p. 385–403. | MR 2163941 | Zbl 1079.32004

[35] —, « Carleson measures for Besov spaces on the ball », J. Funct. Anal. 250 (2007), p. 483–520. | MR 2352489 | Zbl 1135.46014

[36] O. Kures & K. Zhu« A class of integral operators on the unit ball of n », Integr. Equ. Oper. Theory 56 (2006), p. 71–82. | MR 2256998 | Zbl 1109.47041

[37] S. Li, H. Wulan, R. Zhao & K. Zhu« A characterization of Bergman spaces on the unit ball of n », 2007, to appear in Glasgow Math J.

[38] D. Luecking« A technique for characterizing Carleson measures on Bergman spaces », Proc. Amer. Math. Soc. 87 (1983), p. 656–660. | MR 687635 | Zbl 0521.32005

[39] —, « Embedding theorems for spaces of analytic functions via Khinchine’s inequality », Michigan Math. J. 40 (1993), p. 333–358. | MR 1226835 | Zbl 0801.46019

[40] M. Nowark« Bloch and Möbius invariant Besov spaces on the unit ball of n », Complex Variables 44 (2001), p. 1–12. | MR 1826712

[41] C. Ouyang, W. Yang & R. Zhao« Characterizations of Bergman spaces and the Bloch space in the unit ball of n », Trans. Amer. Math. Soc. 374 (1995), p. 4301–4312. | MR 1311908 | Zbl 0849.32005

[42] M. Pavlovic« Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball », Indag. Math. 2 (1991), p. 89–98. | MR 1104834 | Zbl 0731.32003

[43] M. Pavlovic & K. Zhu« New characterizations of Bergman spaces », Ann. Acad. Sci. Fen. 33 (2008), p. 87–99. | MR 2386839 | Zbl 1147.32008

[44] M. Peloso« Möbius invariant spaces on the unit ball », Michigan Math. J. 39 (1992), p. 509–536. | MR 1182505 | Zbl 0779.32012

[45] S. Power« Hörmander’s Carleson theorem for the ball », Glasg. Math. J. 26 (1985), p. 13–17. | MR 776671 | Zbl 0576.32007

[46] R. Rochberg« Decomposition theorems for Bergman spaces and their applications », in Operators and Function Theory, D. Reidel, 1985, p. 225–277. | MR 810448

[47] W. RudinFunction Theory in the Unit Ball of n , Springer, New York, 1980. | MR 601594

[48] J. Ryll & P. Wojtaszczyk« On homogeneous polynomials on a complex ball », Trans. Amer. Math. Soc. 276 (1983), p. 107–116. | MR 684495 | Zbl 0522.32004

[49] K. Seip« Beurling type density theorems in the unit disk », Invent. Math. 113 (1993), p. 21–39. | MR 1223222 | Zbl 0789.30025

[50] —, « Regular sets of sampling and interpolation for weighted Bergman spaces », Proc. Amer. Math. Soc. 117 (1993), p. 213–220. | MR 1111222 | Zbl 0763.30014

[51] J. Shapiro« Macey topologies, reproducing kernels and diagonal maps on Hardy and Bergman spaces », Duke Math. J. 43 (1976), p. 187–202. | MR 500100 | Zbl 0354.46036

[52] J. Shi« Inequalities for integral means of holomorphic functions and their derivatives in the unit ball of n », Trans. Amer. Math. Soc. 328 (1991), p. 619–632.

[53] A. Siskakis« Weighted integrals of analytic functions », Acta Sci. Math. 66 (2000), p. 651–664. | MR 1804215 | Zbl 0994.46008

[54] D. Stegenga« Multipliers of the Dirichlet space », Illinois J. Math. 24 (1980), p. 113–139. | MR 550655 | Zbl 0432.30016

[55] E. Stein & G. Weiss« Interpolation of operators with change of measures », Trans. Amer. Math. Soc. 87 (1958), p. 159–172. | MR 92943 | Zbl 0083.34301

[56] S. Stević« A generalization of a result of Choa on analytic functions with Hadamard gaps », J. Korean Math. Soc. 43 (2006), p. 579–591. | MR 2218235 | Zbl 1101.32003

[57] M. StollInvariant Potential Theory in the Unit Ball of n , Cambridge Univ. Press, London, 1994. | MR 1297545

[58] F. G. Tricomi & A. Erdelyi« The asymptotic expansion of a ratio of gamma functions », Pacific J. Math. 1 (1951), p. 133–142. | MR 43948 | Zbl 0043.29103

[59] D. Ullrich« Radial divergence in BMOA », Proc. London Math. Soc. 68 (1994), p. 145–160. | MR 1243839 | Zbl 0798.32008

[60] D. Vukotić« A sharp estimate for A α p functions in n », Proc. Amer. Math. Soc. 117 (1993), p. 753–756. | MR 1120512 | Zbl 0773.32004

[61] Z. Wu« Carleson measures and multipliers for the Dirichlet space », J. Funct. Anal. 169 (1999), p. 148–163. | MR 1726750 | Zbl 0962.30032

[62] H. Wulan & K. Zhu« Bloch and BMO functions in the unit ball », 53 (2008), p. 1009–1019, Complex Variables. | MR 2460134 | Zbl 1157.32004

[63] —, « Lipschitz type characterizations of Bergman spaces », to appear in Bull. Canadian. Math. Soc. | Zbl 1273.31003

[64] W. Yang & C. Ouyang« Exact location of α-Bloch spaces in L a p and H p of a complex unit ball », Rocky Mountain J. Math. 30 (2000), p. 1151–1169. | MR 1797836 | Zbl 0978.32002

[65] R. ZhaoOn a general family of function spaces, vol. 105, Ann. Acad. Sci. Fenn. Math. Dissertationes, 1996, 56pp. | MR 1395906

[66] K. Zhu« Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains », J. Operator Theory 20 (1988), p. 329–357. | MR 1004127 | Zbl 0676.47016

[67] —, « Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of n », Trans. Amer. Math. Soc. 323 (1991), 823-842). | MR 982233 | Zbl 0739.46009

[68] —, « Bergman and Hardy spaces with small exponents », Pacific J. Math. 162 (1994), p. 189–199. | MR 1247148 | Zbl 0798.32007

[69] —, « Holomorphic Besov spaces on bounded symmetric domains », Quart. J. Math. Oxford 46 (1995), p. 239–256. | MR 1333834 | Zbl 0837.32013

[70] —, « Holomorphic Besov spaces on bounded symmetric domains II », Indiana Univ. Math. J. 44 (1995), p. 239–256. | Zbl 0837.32013

[71] —, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.