We offer a critical review of several different conceptions of the activity of foundational research, from the time of Gauss to the present. These are (1) the traditional image, guiding Gauss, Dedekind, Frege and others, that sees in the search for more adequate basic systems a logical excavation of a priori structures, (2) the program to find sound formal systems for so-called classical mathematics that can be proved consistent, usually associated with the name of Hilbert, and (3) the historicist alternative, guiding Riemann, Poincaré, Weyl and others, that seeks to perfect available conceptual systems with the aim to avoid conceptual limitations and expand the range of theoretical options. I shall contend that, at times, assumptions about the foundational enterprise emerge from certain dogmas that are frequently inherited from previous, outdated images. To round the discussion, I mention some traits of an alternative program that investigates the epistemology of mathematical knowledge.
Ofrecemos una revisión crítica de varias concepciones de la investigación sobre los fundamentos de la matemática, desde los tiempos de Gauss hasta el presente. Se trata de (1) la imagen tradicional, que guió a Gauss, Dedekind, Frege y otros, y que ve en la búsqueda de sistemas básicos más adecuados una excavación lógica de estructuras a priori, (2) el programa de encontrar sistemas formales correctos para la llamada matemática clásica que puedan demostrarse consistentes, habitualmente asociado al nombre de Hilbert, y (3) la alternativa historicista, que guió a Riemann, Poincaré, Weyl y otros, la cual busca perfeccionar los sistemas conceptuales disponibles a fin de evitar limitaciones conceptuales y ampliar el abanico de opciones teóricas. Defenderé que, en ocasiones, se encuentran supuestos acerca del trabajo sobre fundamentos que emergen de ciertos dogmas, frecuentemente heredados de imágenes previas ya superadas. Para completar la discusión, menciono algunos rasgos de un programa alternativo, que investiga la epistemología del conocimiento matemático.
@article{PHSC_2005__9_S2_27_0, author = {Ferreir\'os, Jos\'e}, title = {Dogmas and the changing images of foundations}, journal = {Philosophia Scientiae}, pages = {27--42}, publisher = {\'Editions Kim\'e}, volume = {9}, number = {S2}, year = {2005}, language = {en}, url = {http://archive.numdam.org/item/PHSC_2005__9_S2_27_0/} }
Ferreirós, José. Dogmas and the changing images of foundations. Philosophia Scientiae, Fonder autrement les mathématiques, Tome 9 (2005) no. S2, pp. 27-42. http://archive.numdam.org/item/PHSC_2005__9_S2_27_0/
[2] Abhandlungen zur Philosophie der Mathematik, Darmstadt: Wissenschaftliche Buchgesellschaft, 1976. | MR | Zbl
1976.-[3] Modern algebra and the rise of mathematical structures, Basel/ Boston: Birkhäuser, 1997. | MR | Zbl
1997.-[4] Was sind und was sollen die Zahlen?, Braunschweig: Vieweg, 1888; reprinted in Gesammelte mathematische Werke, New York: Chelsea, 1969; eng. trans. in [Ewald 1996, vol. 2]. | MR
1888.-[5] From Kant to Hilbert, Oxford: Oxford University Press, 2 vols. | MR
, ed. 1996.-[6] Ferreirós, José forthcoming.- >'O jeoc <'arijmht'izeiu : The rise of pure mathematics as arithmetic with Gauss, in C. Goldstein, N. Schappacher, J. Schwermer, eds., The Shaping of Arithmetic : Number theory after Carl Friedrich Gauss's Disquisitiones Arithmeticae, Berlin : Springer. | MR
[7] Grundgesetze der Arithmetik, vol. 1, Jena: Pohle, 1893; reprint: Hildesheim: Olms, 1969. | EuDML
1893.-[8] Werke, vol. 8, Göttingen: Dieterich, 1900; reprint Hildesheim: Olms, 1973.
1900.-[9] Hilbert's Axiomatic Method and the Laws of Thought, in A. George, Mathematics and Mind, Oxford: Oxford University Press, 1994, 158-200. | MR | Zbl
1994.-[10] From Frege to Gödel, Harvard Univ. Press, 1967; reprinted in 2002. | MR
1967.-[11] Bericht über die Theorie der algebraischen Zahlen, Jahresbericht der DMV, 4, 1897; reprint in Gesammelte Abhandlungen, Berlin: Springer, vol. 1, 1932.
1897.-[12] Gesammelte Abhandlungen, vol. 3, Berlin: Springer, 1935; reprinted in 1970.
1935.-[13] Realism in mathematics, Oxford: Clarendon Press, 1992. | MR | Zbl
1992.-[14] Hilbertprogramm und kritische Philosophie, Göttingen: Vandenhoeck & Ruprecht, 1991. | MR
1991.-[15] Mathematical Logic, New York: Norton, 1940. | JFM | MR | Zbl
1940.-[16] Set theory and its logic, Harvard Univ. Press, 1963. | MR | Zbl
1963.-[17] Epistemology naturalized, in Ontological Relativity and other essays, Columbia Univ. Press, 1969. | MR
1969.-[18] Über die Hypothesen, welche der Geometrie zu Grunde liegen, in Gesammelte Werke, Berlin: Springer, 1991; Eng. trans. in Ewald, op. cit., vol. 2. (See also Riemann's Fragmente philosophischen Inhalts, in Gesammelte Werke.)
1854.-[19] Hilbert's programs: 1917-1922, The Bulletin of Symbolic Logic, 5, 1-44. | MR | Zbl
1999.-