@article{PMIHES_1974__44__191_0, author = {Widom, Harold}, title = {Asymptotic inversion of convolution operators}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {191--240}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {44}, year = {1974}, zbl = {0298.44012}, mrnumber = {374979}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1974__44__191_0/} }
TY - JOUR AU - Widom, Harold TI - Asymptotic inversion of convolution operators JO - Publications Mathématiques de l'IHÉS PY - 1974 SP - 191 EP - 240 VL - 44 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1974__44__191_0/ LA - en ID - PMIHES_1974__44__191_0 ER -
Widom, Harold. Asymptotic inversion of convolution operators. Publications Mathématiques de l'IHÉS, Volume 44 (1974), pp. 191-240. http://archive.numdam.org/item/PMIHES_1974__44__191_0/
[1] Analytic functions of several Banach algebra elements, Ann. of Math., 62 (1955), 204-216. | MR | Zbl
and ,[2] A norm inequality for a finite section Wiener-Hopf equation, Ill. J. Math., 7 (1963), 97-103. | MR | Zbl
,[3] Theorie der konvexen Körper, Berlin, Springer, 1934. | JFM | Zbl
u. ,[4] The strong Szegö limit theorem, Ill. J. Math., 11 (1967), 160-175. | MR | Zbl
,[5] Introduction to the theory of linear non-selfadjoint operators, Providence (Amer. Math. Soc.), 1969. | MR | Zbl
and ,[6] On Szegö's limit theorem, Math. U.S.S.R., Izvestija, 5 (1971), 421-444. | Zbl
and ,[7] Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rat. Mech. Anal., 32 (1969), 190-225. | MR | Zbl
and ,[8] On a theorem of Kac, Szegö, and Baxter, J. d'Anal. Math., 14 (1965), 225-234. | MR | Zbl
,[9] On a formula of Kac and Achiezer II, Arch. Rat. Mech. Anal., 38 (1970), 189-223. | MR | Zbl
,[10] Toeplitz matrices, translation kernels, and a related problem in probability theory, Duke Math. J., 21 (1954), 501-509. | MR | Zbl
,[11] On the eigenvalues of generalized Toeplitz matrices, Math. Scand., 10 (1962), 5-16. | MR | Zbl
and ,[12] Pseudo-differential operators, Proc. Symp. Pure Math., 16, Amer. Math. Soc., Providence, 1970. | MR | Zbl
,[13] On certain hermitian forms associated with the Fourier series of a positive function, Comm. séminaire math. Univ. Lund, tome supp. (1952), 228-237. | MR | Zbl
,[14] A theorem on translation kernels in n dimensions, Trans. Amer. Math. Soc., 94 (1960), 170-180. | MR | Zbl
,