Determinantal probability measures
Publications Mathématiques de l'IHÉS, Volume 98 (2003), p. 167-212

Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.

@article{PMIHES_2003__98__167_0,
     author = {Lyons, Russell},
     title = {Determinantal probability measures},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Springer},
     volume = {98},
     year = {2003},
     pages = {167-212},
     doi = {10.1007/s10240-003-0016-0},
     zbl = {1055.60003},
     mrnumber = {2031202},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_2003__98__167_0}
}
Lyons, Russell. Determinantal probability measures. Publications Mathématiques de l'IHÉS, Volume 98 (2003) pp. 167-212. doi : 10.1007/s10240-003-0016-0. http://www.numdam.org/item/PMIHES_2003__98__167_0/

1. D. J. Aldous (1990), The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math., 3, 450-465. | MR 1069105 | Zbl 0717.05028

2. N. Alon and J. H. Spencer (2001), The Probabilistic Method. Second edition. New York: John Wiley & Sons Inc. | MR 1885388 | Zbl 0767.05001

3. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (1999), Group-invariant percolation on graphs. Geom. Funct. Anal., 9, 29-66. | MR 1675890 | Zbl 0924.43002

4. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (2001), Uniform spanning forests. Ann. Probab., 29, 1-65. | MR 1825141 | Zbl 1016.60009

5. J. Van Den Berg, and H. Kesten (1985), Inequalities with applications to percolation and reliability. J. Appl. Probab., 22, 556-569. | MR 799280 | Zbl 0571.60019

6. A. Beurling and P. Malliavin (1967), On the closure of characters and the zeros of entire functions. Acta Math., 118, 79-93. | MR 209758 | Zbl 0171.11901

7. A. Borodin (2000), Characters of symmetric groups, and correlation functions of point processes. Funkts. Anal. Prilozh., 34, 12-28, 96. English translation: Funct. Anal. Appl., 34(1), 10-23. | MR 1747821 | Zbl 0959.60037

8. A. Borodin, A. Okounkov, and G. Olshanski (2000), Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc., 13, 481-515 (electronic). | MR 1758751 | Zbl 0938.05061

9. A. Borodin and G. Olshanski (2000), Distributions on partitions, point processes, and the hypergeometric kernel. Comment. Math. Phys., 211, 335-358. | MR 1754518 | Zbl 0966.60049

10. A. Borodin and G. Olshanski (2001), z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles. In P. Bleher and A. Its, eds., Random Matrix Models and Their Applications, vol. 40 of Math. Sci. Res. Inst. Publ., pp. 71-94. Cambridge: Cambridge Univ. Press. | Zbl 0987.15013

11. A. Borodin and G. Olshanski (2002), Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Preprint. | MR 2180403 | Zbl 1082.43003

12. J. Bourgain and L. Tzafriri (1987), Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math., 57, 137-224. | Zbl 0631.46017

13. A. Broder (1989), Generating random spanning trees. In 30th Annual Symposium on Foundations of Computer Science (Research Triangle Park, North Carolina), pp. 442-447. New York: IEEE.

14. R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte (1940), The dissection of rectangles into squares. Duke Math. J., 7, 312-340. | MR 3040 | Zbl 0024.16501

15. R. M. Burton and R. Pemantle (1993), Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab., 21, 1329-1371. | MR 1235419 | Zbl 0785.60007

16. J. Cheeger and M. Gromov (1986), L2-cohomology and group cohomology. Topology, 25, 189-215. | MR 837621 | Zbl 0597.57020

17. Y. B. Choe, J. Oxley, A. Sokal, and D. Wagner (2003), Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. To appear. | MR 2037144 | Zbl 1054.05024

18. J. B. Conrey (2003), The Riemann hypothesis. Notices Am. Math. Soc., 50, 341-353. | MR 1954010 | Zbl pre02115047

19. J. B. Conway (1990), A Course in Functional Analysis. Second edition. New York: Springer. | MR 1070713 | Zbl 0706.46003

20. J. P. Conze (1972/73), Entropie d'un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25, 11-30. | Zbl 0261.28015

21. D. J. Daley and D. Vere-Jones (1988), An Introduction to the Theory of Point Processes. New York: Springer. | MR 950166 | Zbl 0657.60069

22. P. Diaconis (2003), Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Bull. Am. Math. Soc., New Ser., 40, 155-178 (electronic). | MR 1962294 | Zbl pre01896626

23. D. Dubhashi and D. Ranjan (1998), Balls and bins: a study in negative dependence. Random Struct. Algorithms, 13, 99-124. | MR 1642566 | Zbl 0964.60503

24. F. J. Dyson (1962), Statistical theory of the energy levels of complex systems. III. J. Math. Phys., 3, 166-175. | MR 143558 | Zbl 0105.41604

25. T. Feder and M. Mihail (1992), Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 26-38, New York. Association for Computing Machinery (ACM). Held in Victoria, BC, Canada.

26. R. M. Foster (1948), The average impedance of an electrical network. In Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 333-340. J. W. Edwards, Ann Arbor, Michigan. Edited by the Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn. | MR 29773 | Zbl 0040.41801

27. W. Fulton and J. Harris (1991), Representation Theory: A First Course. Readings in Mathematics. New York: Springer. | MR 1153249 | Zbl 0744.22001

28. D. Gaboriau (2002), Invariants l2 de relations d'équivalence et de groupes. Publ. Math., Inst. Hautes Étud. Sci., 95, 93-150. | Numdam | Zbl 1022.37002

29. H. O. Georgii (1988), Gibbs Measures and Phase Transitions. Berlin-New York: Walter de Gruyter & Co. | MR 956646 | Zbl 0657.60122

30. O. Häggström (1995), Random-cluster measures and uniform spanning trees. Stochastic Processes Appl., 59, 267-275. | MR 1357655 | Zbl 0840.60089

31. P. R. Halmos (1982), A Hilbert Space Problem Book. Second edition. Encycl. Math. Appl. 17, New York: Springer. | MR 675952 | Zbl 0496.47001

32. D. Heicklen and R. Lyons (2003), Change intolerance in spanning forests. J. Theor. Probab., 16, 47-58. | MR 1956820 | Zbl 1019.60092

33. K. Johansson (2001), Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2), 153, 259-296. | MR 1826414 | Zbl 0984.15020

34. K. Johansson (2002), Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields, 123, 225-280. | MR 1900323 | Zbl 1008.60019

35. G. Kalai (1983), Enumeration of Q-acyclic simplicial complexes. Isr. J. Math., 45, 337-351. | MR 720308 | Zbl 0535.57011

36. Y. Katznelson and B. Weiss (1972), Commuting measure-preserving transformations. Isr. J. Math., 12, 161-173. | MR 316680 | Zbl 0239.28014

37. G. Kirchhoff (1847), Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72, 497-508.

38. R. Lyons (1998), A bird's-eye view of uniform spanning trees and forests. In D. Aldous and J. Propp, eds., Microsurveys in Discrete Probability, vol. 41 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 135-162. Providence, RI: Am. Math. Soc., Papers from the workshop held as part of the Dimacs Special Year on Discrete Probability in Princeton, NJ, June 2-6, 1997. | Zbl 0909.60016

39. R. Lyons (2000), Phase transitions on nonamenable graphs. J. Math. Phys., 41, 1099-1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR 1757952 | Zbl 1034.82014

40. R. Lyons (2003), Random complexes and ℓ2-Betti numbers. In preparation.

41. R. Lyons, Y. Peres, and O. Schramm (2003), Minimal spanning forests. In preparation. | Zbl pre05115530

42. R. Lyons and J. E. Steif (2003), Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. To appear. | MR 2030095 | Zbl 1068.82010

43. O. Macchi (1975), The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7, 83-122. | MR 380979 | Zbl 0366.60081

44. S. B. Maurer (1976), Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math., 30, 143-148. | MR 392635 | Zbl 0364.05021

45. M. L. Mehta (1991), Random Matrices. Second edition. Boston, MA: Academic Press Inc. | MR 1083764 | Zbl 0780.60014

46. B. Morris (2003), The components of the wired spanning forest are recurrent. Probab. Theory Related Fields, 125, 259-265. | MR 1961344 | Zbl 1031.60035

47. C. M. Newman (1984), Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong, ed., Inequalities in Statistics and Probability, pp. 127-140. Hayward, CA: Inst. Math. Statist. Proceedings of the symposium held at the University of Nebraska, Lincoln, Neb., October 27-30, 1982. | MR 789244

48. A. Okounkov (2001), Infinite wedge and random partitions. Sel. Math., New Ser., 7, 57-81. | MR 1856553 | Zbl 0986.05102

49. A. Okounkov and N. Reshetikhin (2003), Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc., 16, 581-603 (electronic). | MR 1969205 | Zbl 1009.05134

50. D. S. Ornstein and B. Weiss (1987), Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math., 48, 1-141. | MR 910005 | Zbl 0637.28015

51. J. G. Oxley (1992), Matroid Theory. New York: Oxford University Press. | MR 1207587 | Zbl 1115.05001

52. R. Pemantle (1991), Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19, 1559-1574. | MR 1127715 | Zbl 0758.60010

53. R. Pemantle (2000), Towards a theory of negative dependence. J. Math. Phys., 41, 1371-1390. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR 1757964 | Zbl 1052.62518

54. J. G. Propp and D. B. Wilson (1998), How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms, 27, 170-217. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). | MR 1622393 | Zbl 0919.68092

55. R. Redheffer (1972), Two consequences of the Beurling-Malliavin theory. Proc. Am. Math. Soc., 36, 116-122. | MR 322439 | Zbl 0266.42017

56. R. M. Redheffer (1977), Completeness of sets of complex exponentials. Adv. Math., 24, 1-62. | MR 447542 | Zbl 0358.42007

57. K. Seip and A. M. Ulanovskii (1997), The Beurling-Malliavin density of a random sequence. Proc. Am. Math. Soc., 125, 1745-1749. | MR 1371141 | Zbl 0914.42005

58. Q. M. Shao (2000), A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab., 13, 343-356. | MR 1777538 | Zbl 0971.60015

59. Q. M. Shao and C. Su (1999), The law of the iterated logarithm for negatively associated random variables. Stochastic Processes Appl., 83, 139-148. | MR 1705604 | Zbl 0997.60023

60. T. Shirai and Y. Takahashi (2000), Fermion process and Fredholm determinant. In H. G. W. Begehr, R. P. Gilbert, and J. Kajiwara, eds., Proceedings of the Second ISAAC Congress, vol. 1, pp. 15-23. Kluwer Academic Publ. International Society for Analysis, Applications and Computation, vol. 7. | MR 1940779 | Zbl 1036.60045

61. T. Shirai and Y. Takahashi (2002), Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. Preprint. | MR 2018415 | Zbl 1051.60052

62. T. Shirai and Y. Takahashi (2003), Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties. Ann. Probab., 31, 1533-1564. | MR 1989442 | Zbl 1051.60053

63. T. Shirai and H. J. Yoo (2002), Glauber dynamics for fermion point processes. Nagoya Math. J., 168, 139-166. | MR 1942400 | Zbl 1029.82025

64. A. Soshnikov (2000a), Determinantal random point fields. Usp. Mat. Nauk, 55, 107-160. | MR 1799012 | Zbl 0991.60038

65. A. B. Soshnikov (2000b), Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys., 100, 491-522. | MR 1788476 | Zbl 1041.82001

66. V. Strassen (1965), The existence of probability measures with given marginals. Ann. Math. Stat., 36, 423-439. | MR 177430 | Zbl 0135.18701

67. C. Thomassen (1990), Resistances and currents in infinite electrical networks. J. Combin. Theory, Ser. B, 49, 87-102. | MR 1056821 | Zbl 0706.94029

68. J. P. Thouvenot (1972), Convergence en moyenne de l'information pour l'action de Z2. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 24, 135-137. | Zbl 0266.60037

69. A. M. Vershik and S. V. Kerov (1981), Asymptotic theory of the characters of a symmetric group. Funkts. Anal. i Prilozh., 15, 15-27, 96. English translation: Funct. Anal. Appl., 15(4), 246-255 (1982). | MR 639197 | Zbl 0507.20006

70. D. J. A. Welsh (1976), Matroid Theory. London: Academic Press [Harcourt Brace Jovanovich Publishers]. L. M. S. Monographs, No. 8. | MR 427112 | Zbl 0343.05002

71. N. White, ed. (1987), Combinatorial Geometries. Cambridge: Cambridge University Press. | MR 921064 | Zbl 0626.00007

72. H. Whitney (1935), On the abstract properties of linear dependence. Am. J. Math., 57, 509-533. | MR 1507091 | Zbl 0012.00404

73. H. Whitney (1957), Geometric Integration Theory. Princeton, N.J.: Princeton University Press. | MR 87148 | Zbl 0083.28204

74. D. B. Wilson (1996), Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296-303. New York: ACM. Held in Philadelphia, PA, May 22-24, 1996. | MR 1427525 | Zbl 0946.60070

75. L. X. Zhang (2001), Strassen's law of the iterated logarithm for negatively associated random vectors. Stochastic Processes Appl., 95, 311-328. | Zbl 1059.60042

76. L. X. Zhang and J. Wen (2001), A weak convergence for negatively associated fields. Stat. Probab. Lett., 53, 259-267. | MR 1841627 | Zbl 0994.60026