@article{PSMIR_1985___4_40_0, author = {Rotillon, Denis}, title = {Anneaux d'invariants de groupes finis {Intersections} compl\`etes}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, pages = {40--70}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {4}, year = {1985}, zbl = {0596.14007}, language = {fr}, url = {http://archive.numdam.org/item/PSMIR_1985___4_40_0/} }
TY - JOUR AU - Rotillon, Denis TI - Anneaux d'invariants de groupes finis Intersections complètes JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1985 SP - 40 EP - 70 IS - 4 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1985___4_40_0/ LA - fr ID - PSMIR_1985___4_40_0 ER -
%0 Journal Article %A Rotillon, Denis %T Anneaux d'invariants de groupes finis Intersections complètes %J Publications de l'Institut de recherche mathématiques de Rennes %D 1985 %P 40-70 %N 4 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1985___4_40_0/ %G fr %F PSMIR_1985___4_40_0
Rotillon, Denis. Anneaux d'invariants de groupes finis Intersections complètes. Publications de l'Institut de recherche mathématiques de Rennes, Séminaires de mathématiques - science, histoire et société, no. 4 (1985), pp. 40-70. http://archive.numdam.org/item/PSMIR_1985___4_40_0/
[Bl] Finite Collineation Groups, University of Chicago Press, 1917.
,[Br] Uber endliche lineare Gruppen von Prinzahlgrad, Math. Annalen 169, 73-96 (1967). | MR | Zbl
,[Co] Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup. 9, 379-436 (1976). | Numdam | MR | Zbl
,[G.W] The embedding dimension and multiplicities of rational singularities which are IC. To appear.
, ,[Go1] Invariants of linear groups generated by matrices with two non unit eigenvalues, J of Soviet Math., 1984, 2919-27. | Zbl
,[Go2] On the Stanley Conjecture and the classification of finite groups whose algebra of invariants is a complete intersection J of Soviet Math. Doklady 26, 3, 722-24 (1982). | MR | Zbl
,[H1]Linear groups containing an element with an eigenspace of codimension two, J of Algebra 34, 260-87 (1975). | MR | Zbl
,[H2] Imprimitive linear groups generated by elements containing an eigenspace of codimension two, J of Algebra 63, (1980) 499-513. | MR | Zbl
,[H.S] Most primitive groups have messy invariants, Advance in Math. 32, 118-127 (1979). | MR | Zbl
, ,[H.W] Linear groups of degree n containing an element with exactly n-2 equel eigenvalues, J linear and Multilinear Algebra, 3, 53-59 (1975). | MR | Zbl
, ,[K.W] Finite linear groups whose rings of invariants is a complete intersection, Bull. AMS 6 (1982) 221-23. | MR | Zbl
, ,[L.T] Pseudo Rationnel local rings and a theorem of Briançon-Skoda about integral closures of ideals Michigan J of Math., 28 (1981) 97-116. | MR | Zbl
, ,[M] Determinations of all primitive collineation groups in more then four variables which contain homologies, Am J of Math. 36 (1914) 1-12. | JFM | MR
,[N1] Relative invariants of finite groups, J of Algebra, 79, 218-34 (1982). | MR | Zbl
,[N2] Rings of invariants of finite groups which are hypersurfaces I, J of Algebra, 80, 279-94 (1983). | MR | Zbl
,[N3] Rings of invariants of finite groups which are hypersurface II, to appear inAdvances in Math. | MR | Zbl
,[N4] Quotient singularities which are complete intersection, Manuscripta Math. 48, 163-87 (1984). | MR | Zbl
,[N5] Quotient complete intersections of affine spaces by finite linear groups, Preprint. | MR | Zbl
,[N-W] The classification of quotient singularities which are complete intersections. Proc CIME Lecture Notes, 1092, Springer Verlag. Berlin. | MR | Zbl
, ,[R] Groupes linéaires finis de degré trois et anneaux d'invariants intersection complète, Preprint Univ. Paris-Nord (1981).
,[SGA1] I (1961).
, Séminaire Géométrie Algébrique. Tome[SGA2] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North Holland (1968). | MR
,[Sh, T] Finite unitary reflection groups Can J of Math. 6 (1954), 274-304. | MR | Zbl
, ,[Sp] Invariant Theory, Lecture Notes in Math., 585, Springer (1977). Berlin. | Zbl
,[St1] Relative invariants of finite groups generated by pseudoreflections, J of Algebra 49 (1977) 134-48. | MR | Zbl
,[St2] Hilbert functions of graded algebras, Adv. in Math., 28 (1978) 57-83. | MR | Zbl
,[St3] Invariants of finite groups and their applications to combinatoires, Bull. A.M.S. 1 (1979) 475-511. | MR | Zbl
,[Wal] Linear groups of degree n containing an involution with two eigenvalues -1, J of Algebra 53 (1978) 58-67. | MR | Zbl
,[W1] Certain invariant subrings are Gorenstein II, Osaka J. Math. 11, (1974), 379-388 | MR | Zbl
,[W2] Invariant subrings which are complete intersection I (invariants of finite groups : abelian case) Nagoya J. of Math. 77 (1980) 89-9 . | MR
,[W-R] Invariant subrings of C[X,Y,Z] which are complete intersections, Manuscripta Math. 39 (1982), 339-57. | MR | Zbl
, ,