@article{PSMIR_1993___2_A6_0, author = {Liu, Quansheng}, title = {On the {Survival} {Probability} of a {Branching} {Process} in a {Random} {Environment}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, eid = {6}, pages = {1--9}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {2}, year = {1993}, mrnumber = {1347699}, language = {en}, url = {http://archive.numdam.org/item/PSMIR_1993___2_A6_0/} }
TY - JOUR AU - Liu, Quansheng TI - On the Survival Probability of a Branching Process in a Random Environment JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1993 SP - 1 EP - 9 IS - 2 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1993___2_A6_0/ LA - en ID - PSMIR_1993___2_A6_0 ER -
%0 Journal Article %A Liu, Quansheng %T On the Survival Probability of a Branching Process in a Random Environment %J Publications de l'Institut de recherche mathématiques de Rennes %D 1993 %P 1-9 %N 2 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1993___2_A6_0/ %G en %F PSMIR_1993___2_A6_0
Liu, Quansheng. On the Survival Probability of a Branching Process in a Random Environment. Publications de l'Institut de recherche mathématiques de Rennes, no. 2 (1993), article no. 6, 9 p. http://archive.numdam.org/item/PSMIR_1993___2_A6_0/
[1] On the extinction times of varing and random environment branching processes, J. Appl. Prob. 12 (1975) 39-46. | MR | Zbl
,[2] Branching processes with random environments I & II, Ann. Math. Statist. 42 (1971) 1499-1520 and 1843-1858. | Zbl
and ,[3] Subcritical branching processes in a two state random environment, and a percolation problem on trees, J. Appl. Prob. 24 (1987) 798-808. | MR | Zbl
,[4] On the survival probability of a branching process in a finite state i.i.d.environment, Stoch. Proc. and Their Appl. 27 (1988) 151-157. | MR | Zbl
,[5] Superbranching processes and projections of Cantor sets. Proba. Th. & Rel. Fields, 78 (1988) 335-355. | MR | Zbl
and ,[6] Random walk in a random environment and first-passage percolation on trees. Ann. of Proba. 20 (1992) 125-136. | MR | Zbl
and ,[7] On branching processes in random environments, Ann. Math. Statist. 40 (1969) 814-827. | MR | Zbl
and ,