@article{PSMIR_1993___2_A7_0, author = {Liu, Quansheng}, title = {The {Exact} {Hausdorff} {Dimension} of a {Branching} {Set}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, eid = {7}, pages = {1--38}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {2}, year = {1993}, mrnumber = {1347700}, language = {en}, url = {http://archive.numdam.org/item/PSMIR_1993___2_A7_0/} }
TY - JOUR AU - Liu, Quansheng TI - The Exact Hausdorff Dimension of a Branching Set JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1993 SP - 1 EP - 38 IS - 2 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1993___2_A7_0/ LA - en ID - PSMIR_1993___2_A7_0 ER -
%0 Journal Article %A Liu, Quansheng %T The Exact Hausdorff Dimension of a Branching Set %J Publications de l'Institut de recherche mathématiques de Rennes %D 1993 %P 1-38 %N 2 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1993___2_A7_0/ %G en %F PSMIR_1993___2_A7_0
Liu, Quansheng. The Exact Hausdorff Dimension of a Branching Set. Publications de l'Institut de recherche mathématiques de Rennes, Fascicule de probabilités, no. 2 (1993), article no. 7, 38 p. http://archive.numdam.org/item/PSMIR_1993___2_A7_0/
[1] Branching processes. Spring-Verlag, 1972. | MR | Zbl
and .[2] On the fundamental geometrical properties of linearly measurable plan sets of points. Mathematische Annalen. 98 (1928) 422-64. | JFM | MR
.[3] The Geometry of Fractal Sets. Cambridge Univ. Press, 1985 | MR | Zbl
.[4] Random fractals, Math. Proc. Camb. Phil. Soc. 100 (1986) 559-582. | MR | Zbl
.[5] Cut set sums and tree processes. Proc. Amer. Math. Soc., (2) 101 (1987) 337-346. | MR | Zbl
.[6] Fractal Geometry. John Wiley & Sons Ltd, 1990. | MR | Zbl
.[7] The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc., 71 (1988), No. 381. | MR | Zbl
, and .[8] Trees generated by a simple branching process. J. London Math. Soc. (2) 24 (1981) 373-384. | MR | Zbl
.[9] Sur certaines martingales de B. Mandelbrot, Adv. Math. 22 (1976) 131-145. | MR | Zbl
, ,[10] Sur quelques problèmes à propos des processus de branchement, des flots dans les réseaux et des mesures de Hausdorff associées. Thèse de doctorat de L'Université Paris 6, Laboratoire de Probabilités, Paris, 1993.
.[11] Random walks and percolation on trees. Ann. of Probab. 18 (1990) 931-952 | MR | Zbl
.[12] Random walk in a random environment and first passage percolation on trees. Ann. of probab. 20, (1992) 125-135. | MR | Zbl
and .[13] Ergodic theory on Galton-Watson trees, I: Speed of random walk and dimension of Harmonic measure. preprint, 1993. | MR | Zbl
, and .[14] Random constructions, Asympototic geometric and topological properties. Trans. Amer. Math. Soc. 295 (1986), 325-346. | MR | Zbl
and .[15] Arbre et processus de Galton-Watson, Ann. Inst. Henri Poincaré, 22 (1986), 199-207. | Numdam | MR | Zbl
.[16] Hausdorff Measures, Cambridge Univ. Press, 1970. | MR | Zbl
.[17] The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), 383-406. | MR | Zbl
.