@article{PS_1997__1__183_0, author = {Garnier, Josselin}, title = {Multi-scaled diffusion-approximation. {Applications} to wave propagation in random media}, journal = {ESAIM: Probability and Statistics}, pages = {183--206}, publisher = {EDP-Sciences}, volume = {1}, year = {1997}, mrnumber = {1447334}, zbl = {0930.60061}, language = {en}, url = {http://archive.numdam.org/item/PS_1997__1__183_0/} }
TY - JOUR AU - Garnier, Josselin TI - Multi-scaled diffusion-approximation. Applications to wave propagation in random media JO - ESAIM: Probability and Statistics PY - 1997 SP - 183 EP - 206 VL - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_1997__1__183_0/ LA - en ID - PS_1997__1__183_0 ER -
Garnier, Josselin. Multi-scaled diffusion-approximation. Applications to wave propagation in random media. ESAIM: Probability and Statistics, Tome 1 (1997), pp. 183-206. http://archive.numdam.org/item/PS_1997__1__183_0/
Handbook of mathematical functions, Dover Publications, New-York.
and ( 1965).Stopping times and tightness. Ann. Prob. 6 335-340. | MR | Zbl
( 1978).Ph-D thesis. Paris-Sud.
( 1996)Asymptotic analysis of P.D.E.'s with wide-band noise disturbances and expansions of the moments. Stochastic analysis and Appl. 2 369-422. | MR | Zbl
and ( 1984).Therandom Schrödinger equation, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer.
( 1985).Spectral theory of random Schrödinger operators. Birkhauser. | MR | Zbl
and ( 1990).Field theory of guided waves. Mac Graw-Hill, New York. | MR
( 1960).Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J. of Stat. Phys. 43 423-439. | MR | Zbl
and ( 1986).Time delay in random scattering. SIAM J. Appl. Math. 54 443-455. | MR | Zbl
and ( 1994).Ph-D thesis. Ecole Polytechnique.
( 1996)A circular harmonic computer analysis for rectangular dielectric waveguides. Bell. Syst. Tech. J. 48.
( 1968).Time delay in scattering processes. Helv. Phys. Acta 45 398-426. | MR
, and ( 1972).A limit theorem for turbulent diffusion. Comm. Math. Phys. 65 97-128. | MR | Zbl
and ( 1979).Nonlinearity and localization in one-dimensional random media, in: Disorder and Nonlinearity Bishop, A. R., Campbell, I. K. and Pnevmatikos, S., eds. Springer.
, and ( 1989).Transmission of waves by a nonlinear random medium. J. of Stat. Phys. 63 567-583. | MR
, and ( 1991).Approximation and weak convergence methods for random processes. MIT Press. | MR | Zbl
( 1984).Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev. Rapport interne CMAP-Ecole Polytechnique. 106.
( 1984).Waves in one-dimensional random media, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer. | MR | Zbl
( 1988).Martingale approach to some limit theorems, in: Statistical Mechanics andDynamical Systems Ruelle, D., ed. Duke Turbulence Conf. (Duke Univ. Math. Series III, Part VI). | MR | Zbl
, and ( 1976).