@article{PS_1999__3__107_0, author = {Aza{\"\i}s, Jean-Marc and Cierco-Ayrolles, Christine and Croquette, Alain}, title = {Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process}, journal = {ESAIM: Probability and Statistics}, pages = {107--129}, publisher = {EDP-Sciences}, volume = {3}, year = {1999}, mrnumber = {1716124}, zbl = {0933.60032}, language = {en}, url = {http://archive.numdam.org/item/PS_1999__3__107_0/} }
TY - JOUR AU - Azaïs, Jean-Marc AU - Cierco-Ayrolles, Christine AU - Croquette, Alain TI - Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process JO - ESAIM: Probability and Statistics PY - 1999 SP - 107 EP - 129 VL - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_1999__3__107_0/ LA - en ID - PS_1999__3__107_0 ER -
%0 Journal Article %A Azaïs, Jean-Marc %A Cierco-Ayrolles, Christine %A Croquette, Alain %T Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process %J ESAIM: Probability and Statistics %D 1999 %P 107-129 %V 3 %I EDP-Sciences %U http://archive.numdam.org/item/PS_1999__3__107_0/ %G en %F PS_1999__3__107_0
Azaïs, Jean-Marc; Cierco-Ayrolles, Christine; Croquette, Alain. Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process. ESAIM: Probability and Statistics, Volume 3 (1999), pp. 107-129. http://archive.numdam.org/item/PS_1999__3__107_0/
[1] Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York ( 1972). | MR | Zbl
and ,[2] An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, Ca ( 1990). | MR | Zbl
,[3] Une formule pour calculer la distribution du maximum d'un processus stochastique. C.R. Acad. Sci. Paris Ser. I Math. 324 ( 1997) 225-230. | MR | Zbl
and ,[4] The Distribution of the Maximum of a Stochastic Process and the Rice Method, submitted.
and ,[5] Problèmes statistiques liés à la détection et à la localisation d'un gène à effet quantitatif. PHD dissertation. University of Toulouse, France ( 1996).
,[6] Testing for Quantitative Gene Detection in Dense Map, submitted.
and ,[7] Stationary and Related Stochastic Processes, J. Wiley & Sons, New-York ( 1967). | MR | Zbl
and ,[8] Testing in locally conic models, and application to mixture models. ESAIM: Probab. Statist. 1 ( 1997) 285-317. | EuDML | Numdam | MR | Zbl
and ,[9] Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 64 ( 1977) 247-254. | MR | Zbl
,[10] On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results, in Proc. of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Le Cam L.M. and Olshen R.A., Eds. ( 1985). | MR
and ,[11] On the rate of convergence for extreme of mean square differentiable stationary normal processes. J. Appl. Prob. 34 ( 1997) 908-923. | MR | Zbl
and ,[12] Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New-York ( 1983). | MR | Zbl
, and ,[13] Rice series in the theory of random functions. Vestnik Leningrad Univ. Math. 1 ( 1974) 143-155.
,[14] Maple V Programming guide. Springer ( 1998). | Zbl
, et al.,[15] Comparison of distribution functions of maxima of Gaussian processes. Theory Probab. Appl. 26 ( 1981) 687-705. | MR | Zbl
,[16] Large deviations of random processes close to gaussian ones. Theory Probab. Appl. 27 ( 1982) 504-524. | MR | Zbl
,[17] Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society. Providence, Rhode Island ( 1996). | MR | Zbl
,[18] Mathematical Analysis of Random Noise. Bell System Tech. J. 23 ( 1944) 282-332; 24 ( 1945) 45-156. | MR | Zbl
,[19] Statistical Sciences, S-Plus Programmer's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc. ( 1993).
,[20] Significance levels in exploratory projection pursuit. Biometrika 78 ( 1991759-769. | MR | Zbl
,[21] Surfaces aléatoires. Mesure géometrique des ensembles de niveau. Springer-Verlag, New-York, Lecture Notes in Mathematics 1147 ( 1985). | MR | Zbl
,