Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process
ESAIM: Probability and Statistics, Volume 3 (1999), pp. 107-129.
@article{PS_1999__3__107_0,
     author = {Aza{\"\i}s, Jean-Marc and Cierco-Ayrolles, Christine and Croquette, Alain},
     title = {Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process},
     journal = {ESAIM: Probability and Statistics},
     pages = {107--129},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1999},
     zbl = {0933.60032},
     mrnumber = {1716124},
     language = {en},
     url = {http://archive.numdam.org/item/PS_1999__3__107_0/}
}
TY  - JOUR
AU  - Azaïs, Jean-Marc
AU  - Cierco-Ayrolles, Christine
AU  - Croquette, Alain
TI  - Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process
JO  - ESAIM: Probability and Statistics
PY  - 1999
DA  - 1999///
SP  - 107
EP  - 129
VL  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/PS_1999__3__107_0/
UR  - https://zbmath.org/?q=an%3A0933.60032
UR  - https://www.ams.org/mathscinet-getitem?mr=1716124
LA  - en
ID  - PS_1999__3__107_0
ER  - 
%0 Journal Article
%A Azaïs, Jean-Marc
%A Cierco-Ayrolles, Christine
%A Croquette, Alain
%T Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process
%J ESAIM: Probability and Statistics
%D 1999
%P 107-129
%V 3
%I EDP-Sciences
%G en
%F PS_1999__3__107_0
Azaïs, Jean-Marc; Cierco-Ayrolles, Christine; Croquette, Alain. Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process. ESAIM: Probability and Statistics, Volume 3 (1999), pp. 107-129. http://archive.numdam.org/item/PS_1999__3__107_0/

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York ( 1972). | MR | Zbl

[2] R.J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, Ca ( 1990). | MR | Zbl

[3] J.-M. Azaïs and M. Wschebor, Une formule pour calculer la distribution du maximum d'un processus stochastique. C.R. Acad. Sci. Paris Ser. I Math. 324 ( 1997) 225-230. | MR | Zbl

[4] J-M. Azaïs and M. Wschebor, The Distribution of the Maximum of a Stochastic Process and the Rice Method, submitted.

[5] C. Cierco, Problèmes statistiques liés à la détection et à la localisation d'un gène à effet quantitatif. PHD dissertation. University of Toulouse, France ( 1996).

[6] C. Cierco and J.-M. Azaïs, Testing for Quantitative Gene Detection in Dense Map, submitted.

[7] H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, J. Wiley & Sons, New-York ( 1967). | MR | Zbl

[8] D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models, and application to mixture models. ESAIM: Probab. Statist. 1 ( 1997) 285-317. | EuDML | Numdam | MR | Zbl

[9] R.B. Davies, Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 64 ( 1977) 247-254. | MR | Zbl

[10] J. Ghosh and P. Sen, On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results, in Proc. of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Le Cam L.M. and Olshen R.A., Eds. ( 1985). | MR

[11] M.F. Kratz and H. Rootzén, On the rate of convergence for extreme of mean square differentiable stationary normal processes. J. Appl. Prob. 34 ( 1997) 908-923. | MR | Zbl

[12] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New-York ( 1983). | MR | Zbl

[13] R.N. Miroshin, Rice series in the theory of random functions. Vestnik Leningrad Univ. Math. 1 ( 1974) 143-155.

[14] M.B. Monagan, et al., Maple V Programming guide. Springer ( 1998). | Zbl

[15] V.I. Piterbarg, Comparison of distribution functions of maxima of Gaussian processes. Theory Probab. Appl. 26 ( 1981) 687-705. | MR | Zbl

[16] V.I. Piterbarg, Large deviations of random processes close to gaussian ones. Theory Probab. Appl. 27 ( 1982) 504-524. | MR | Zbl

[17] V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society. Providence, Rhode Island ( 1996). | MR | Zbl

[18] S.O. Rice, Mathematical Analysis of Random Noise. Bell System Tech. J. 23 ( 1944) 282-332; 24 ( 1945) 45-156. | MR | Zbl

[19] Splus, Statistical Sciences, S-Plus Programmer's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc. ( 1993).

[20] J. Sun, Significance levels in exploratory projection pursuit. Biometrika 78 ( 1991759-769. | MR | Zbl

[21] M. Wschebor, Surfaces aléatoires. Mesure géometrique des ensembles de niveau. Springer-Verlag, New-York, Lecture Notes in Mathematics 1147 ( 1985). | MR | Zbl