@article{PS_2000__4__25_0, author = {Gassiat, Elisabeth and Keribin, Christine}, title = {The likelihood ratio test for the number of components in a mixture with {Markov} regime}, journal = {ESAIM: Probability and Statistics}, pages = {25--52}, publisher = {EDP-Sciences}, volume = {4}, year = {2000}, mrnumber = {1780964}, zbl = {0982.62016}, language = {en}, url = {http://archive.numdam.org/item/PS_2000__4__25_0/} }
TY - JOUR AU - Gassiat, Elisabeth AU - Keribin, Christine TI - The likelihood ratio test for the number of components in a mixture with Markov regime JO - ESAIM: Probability and Statistics PY - 2000 SP - 25 EP - 52 VL - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_2000__4__25_0/ LA - en ID - PS_2000__4__25_0 ER -
%0 Journal Article %A Gassiat, Elisabeth %A Keribin, Christine %T The likelihood ratio test for the number of components in a mixture with Markov regime %J ESAIM: Probability and Statistics %D 2000 %P 25-52 %V 4 %I EDP-Sciences %U http://archive.numdam.org/item/PS_2000__4__25_0/ %G en %F PS_2000__4__25_0
Gassiat, Elisabeth; Keribin, Christine. The likelihood ratio test for the number of components in a mixture with Markov regime. ESAIM: Probability and Statistics, Tome 4 (2000), pp. 25-52. http://archive.numdam.org/item/PS_2000__4__25_0/
[1] On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput. 25 ( 1996) 733-740. | MR | Zbl
, , , and ,[2] Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 ( 1966) 1554-1563. | MR | Zbl
and ,[3] Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli 2 ( 1996) 199-228. | MR | Zbl
and ,[4] Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat. 26 ( 1998) 614-1635. | MR | Zbl
, and ,[5] The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput. 26 ( 1997) 631-648. | MR | Zbl
and ,[6] Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology 51 ( 1989) 79-94. | MR | Zbl
,[7] Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 ( 1999) 351-358. | MR | Zbl
,[8] Probabilits et statistiques, Tome 2. Masson ( 1993). | MR | Zbl
and ,[9] Estimation of the number of components in a mixture. Bernoulli 3 ( 1997a) 279-299. | MR | Zbl
and ,[10] Testing in locally conic models. ESAIM Probab. Statist. 1 ( 1997b). | Numdam | MR | Zbl
and ,[11] Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 ( 1999) 1178-1209. | MR | Zbl
and ,[12] Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 ( 1977) 1-38. | MR | Zbl
, and ,[13] Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models ( 1999) (submitted). | Zbl
and ,[14] Algorithmes stochastiques. Springer ( 1996). | MR | Zbl
,[15] Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B 58 ( 1996) 609-617. | Zbl
and ,[16] Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland ( 1990).
,[17] Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B 249 ( 1992) 125-132.
and ,[18] Martingale Limit Theory and Its Application. Academic Press ( 1980). | MR | Zbl
and ,[19] A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen ( 1985) 807-810. | MR
,[20] On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 ( 1985) 235-240. | MR | Zbl
,[21] Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 ( 1999) 514-535. | MR | Zbl
and ,[22] Tests de modèles par maximum de vraisemblance, Thèse de l'Université d'Evry-Val d'Essonne ( 1999).
,[23] Consistent estimation of the Order of Mixture Models ( 1997) (submitted). | Zbl
,[24] Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl. 40 ( 1992) 127-143. | MR | Zbl
,[25] Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics 48 ( 1992) 545-558.
and ,[26] Mixture models: Theory, Geometry and Applications ( 1995). | Zbl
,[27] Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall ( 1997). | MR | Zbl
and ,[28] On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist. 36 ( 1987) 318-324.
,[29] Statistique asymptotique pour les modèles de Markov cachés. Thèse de l'Université de Rennes I ( 1997).
,[30] Exponential forgetting and Geometrie Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear). | MR | Zbl
and ,[31] Markov chains and stochastic stability. Springer-Verlag ( 1993). | MR | Zbl
and ,[32] A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 ( 1989) 257-284.
,[33] Estimating the order of hidden Markov models. Statistics 26 ( 1995) 345-354. | MR | Zbl
,[34] Identification de l'ordre des processus ARMA stables. Contribution à l'étude statistique des chaînes de Markov cachées. Thèse de l'Université de Montpellier II ( 1997).
,[35] Asymptotic Statistics. Cambridge Ed. ( 1999). | MR | Zbl
,