The brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices is interpreted as a system of interacting brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles goes to infinity (through the empirical measure process). We prove that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on is the only limiting distribution of when goes to infinity and has an analytical density.
Mots clés : repulsive particles, multivalued stochastic differential equations, empirical measure process
@article{PS_2001__5__203_0, author = {C\'epa, Emmanuel and L\'epingle, Dominique}, title = {Brownian particles with electrostatic repulsion on the circle : {Dyson's} model for unitary random matrices revisited}, journal = {ESAIM: Probability and Statistics}, pages = {203--224}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, zbl = {1002.60093}, language = {en}, url = {http://archive.numdam.org/item/PS_2001__5__203_0/} }
TY - JOUR AU - Cépa, Emmanuel AU - Lépingle, Dominique TI - Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited JO - ESAIM: Probability and Statistics PY - 2001 SP - 203 EP - 224 VL - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_2001__5__203_0/ LA - en ID - PS_2001__5__203_0 ER -
%0 Journal Article %A Cépa, Emmanuel %A Lépingle, Dominique %T Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited %J ESAIM: Probability and Statistics %D 2001 %P 203-224 %V 5 %I EDP-Sciences %U http://archive.numdam.org/item/PS_2001__5__203_0/ %G en %F PS_2001__5__203_0
Cépa, Emmanuel; Lépingle, Dominique. Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 203-224. http://archive.numdam.org/item/PS_2001__5__203_0/
[1] A nonlinear SDE involving Hilbert transform. J. Funct. Anal. 165 (1999) 390-406. | MR | Zbl
, , and ,[2] Équations différentielles stochastiques multivoques. Sémin. Probab. XXIX (1995) 86-107. | Numdam | MR | Zbl
,[3] Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. | MR | Zbl
,[4] Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 (1997) 429-449. | MR | Zbl
and ,[5] The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 (1992) 249-272. | MR | Zbl
,[6] The geometry of Brownian curve. Bull. Sci. Math. 2 (1993) 91-106. | MR | Zbl
, , and ,[7] A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. | MR | Zbl
,[8] Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | MR | Zbl
,[9] Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré 35 (1999) 177-204. | Numdam | MR | Zbl
,[10] Non-colliding Brownian motion on the circle. Bull. London Math. Soc. 28 (1996) 643-650. | MR | Zbl
and ,[11] Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York (1988). | MR | Zbl
and ,[12] Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | MR | Zbl
and ,[13] Stochastic integrals. Academic Press, New York (1969). | MR | Zbl
,[14] Random matrices. Academic Press, New York (1991). | MR | Zbl
,[15] Quelques problèmes liés aux systèmes infinis de particules et leurs limites. Sémin. Probab. XX (1986) 426-446. | Numdam | MR | Zbl
,[16] A diffusion process in a singular mean-drift field. Z. Wahrsch. Verw. Gebiete 68 (1985) 247-269. | MR | Zbl
and ,[17] On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985) 363-378. | MR | Zbl
,[18] Continuous martingales and Brownian motion. Springer Verlag, Berlin Heidelberg (1991). | MR | Zbl
and ,[19] Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 (1993) 555-570. | MR | Zbl
and ,[20] Diffusions, Markov processes and Martingales. Wiley and Sons, New York (1987). | MR | Zbl
and ,[21] Stochastic differential equations for multidimensional domains with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. | MR | Zbl
,[22] Dyson's model of interacting Brownian motions at arbitrary coupling strength. Markov Process. Related Fields 4 (1998) 649-661. | Zbl
,[23] Topics in propagation of chaos. École d'été Probab. Saint-Flour XIX (1991) 167-251. | Zbl
,[24] Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J. 9 (1979) 163-177. | MR | Zbl
,[25] Lectures on free probability theory. École d'été Probab. Saint-Flour (1998). | Zbl
,