Penultimate approximation for the distribution of the excesses
ESAIM: Probability and Statistics, Volume 6  (2002), p. 21-31

Let $F$ be a distribution function (d.f) in the domain of attraction of an extreme value distribution ${H}_{\gamma }$; it is well-known that ${F}_{u}\left(x\right)$, where ${F}_{u}$ is the d.f of the excesses over $u$, converges, when $u$ tends to ${s}_{+}\left(F\right)$, the end-point of $F$, to ${G}_{\gamma }\left(\frac{x}{\sigma \left(u\right)}\right)$, where ${G}_{\gamma }$ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for $\gamma >-1$, a function $\Lambda$ which verifies ${lim}_{u\to {s}_{+}\left(F\right)}\Lambda \left(u\right)=\gamma$ and is such that $\Delta \left(u\right)={sup}_{x\in \left[0,{s}_{+}\left(F\right)-u\left[}|{\overline{F}}_{u}\left(x\right)-{\overline{G}}_{\Lambda \left(u\right)}\left(x/\sigma \left(u\right)\right)|$ converges to $0$ faster than $d\left(u\right)={sup}_{x\in \left[0,{s}_{+}\left(F\right)-u\left[}|{\overline{F}}_{u}\left(x\right)-{\overline{G}}_{\gamma }\left(x/\sigma \left(u\right)\right)|$.

DOI : https://doi.org/10.1051/ps:2002002
Classification:  60G70,  62G20
Keywords: generalized Pareto distribution, excesses, penultimate approximation, rate of convergence
@article{PS_2002__6__21_0,
author = {Worms, Rym},
title = {Penultimate approximation for the distribution of the excesses},
journal = {ESAIM: Probability and Statistics},
publisher = {EDP-Sciences},
volume = {6},
year = {2002},
pages = {21-31},
doi = {10.1051/ps:2002002},
zbl = {0992.60056},
mrnumber = {1888136},
language = {en},
url = {http://www.numdam.org/item/PS_2002__6__21_0}
}

Worms, Rym. Penultimate approximation for the distribution of the excesses. ESAIM: Probability and Statistics, Volume 6 (2002) , pp. 21-31. doi : 10.1051/ps:2002002. http://www.numdam.org/item/PS_2002__6__21_0/

 A. Balkema and L. De Haan, Residual life time at great age. Ann. Probab. 2 (1974) 792-801. | MR 359049 | Zbl 0295.60014

 C.M. Goldie, N.H. Bingham and J.L. Teugels, Regular variation. Cambridge University Press (1987). | MR 898871 | Zbl 0617.26001

 J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. | MR 677559 | Zbl 0496.62019

 R.A. Fisher and L.H.C. Tippet, Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc. 24 (1928) 180-190. | JFM 54.0560.05

 M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. | MR 752007 | Zbl 0561.62015

 I. Gomes and L. De Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. | MR 1772401 | Zbl 0947.60019

 M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. | MR 900238 | Zbl 0618.62023

 J. Pickands Iii, Statistical inference using extreme order statistics. Ann. Stat. 3 (1975) 119-131. | MR 423667 | Zbl 0312.62038

 J.-P. Raoult and R. Worms, Rate of convergence for the Generalized Pareto approximation of the excesses (submitted). | Zbl 1044.60041

 R. Worms, Vitesse de convergence de l'approximation de Pareto Généralisée de la loi des excès. Preprint Université de Marne-la-Vallée (10/2000). | Zbl 1013.62014

 R. Worms, Vitesses de convergence pour l'approximation des queues de distributions Ph.D. Thesis Université de Marne-la-Vallée (2000).