Preservation of log-concavity on summation
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215.

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of independent (not necessarily log-concave) random variables.

DOI : 10.1051/ps:2006008
Classification : 60E15, 60C05, 11B75
Mots-clés : log-concavity, convolution, dependent random variables, Stirling numbers, eulerian numbers
@article{PS_2006__10__206_0,
     author = {Johnson, Oliver and Goldschmidt, Christina},
     title = {Preservation of log-concavity on summation},
     journal = {ESAIM: Probability and Statistics},
     pages = {206--215},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006008},
     mrnumber = {2219340},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2006008/}
}
TY  - JOUR
AU  - Johnson, Oliver
AU  - Goldschmidt, Christina
TI  - Preservation of log-concavity on summation
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 206
EP  - 215
VL  - 10
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2006008/
DO  - 10.1051/ps:2006008
LA  - en
ID  - PS_2006__10__206_0
ER  - 
%0 Journal Article
%A Johnson, Oliver
%A Goldschmidt, Christina
%T Preservation of log-concavity on summation
%J ESAIM: Probability and Statistics
%D 2006
%P 206-215
%V 10
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2006008/
%R 10.1051/ps:2006008
%G en
%F PS_2006__10__206_0
Johnson, Oliver; Goldschmidt, Christina. Preservation of log-concavity on summation. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215. doi : 10.1051/ps:2006008. http://archive.numdam.org/articles/10.1051/ps:2006008/

[1] T. Bergstrom and M. Bagnoli, Log-concave probability and its applications. Econom. Theory 26 (2005) 445-469. | Zbl

[2] B. Biais, D. Martimort and J.-C. Rochet, Competing mechanisms in a common value environment. Econometrica 68 (2000) 799-837. | Zbl

[3] M. Bóna and R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs. J. Combin. Theory Ser. A 90 (2000) 293-303. | Zbl

[4] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Amer. Math. Soc. 81 (1989) viii+106. | MR | Zbl

[5] F. Brenti, Expansions of chromatic polynomials and log-concavity. Trans. Amer. Math. Soc. 332 (1992) 729-756. | Zbl

[6] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update in Jerusalem combinatorics '93, Amer. Math. Soc., Providence, RI, Contemp. Math. 178 (1994) 71-89. | Zbl

[7] H. Davenport and G. Pólya, On the product of two power series. Canadian J. Math. 1 (1949) 1-5. | Zbl

[8] V. Gasharov, On the Neggers-Stanley conjecture and the Eulerian polynomials. J. Combin. Theory Ser. A 82 (1998) 134-146. | Zbl

[9] S.G. Hoggar, Chromatic polynomials and logarithmic concavity. J. Combin. Theory Ser. B 16 (1974) 248-254. | Zbl

[10] K. Joag-Dev and F. Proschan, Negative association of random variables with applications. Ann. Statist. 11 (1983) 286-295. | Zbl

[11] E.H. Lieb, Concavity properties and a generating function for Stirling numbers. J. Combin. Theory 5 (1968) 203-206. | Zbl

[12] E.J. Miravete, Preserving log-concavity under convolution: Comment. Econometrica 70 (2002) 1253-1254.

[13] C.P. Niculescu, A new look at Newton's inequalities. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000) Issue 2, Article 17; see also http://jipam.vu.edu.au/. | Zbl

[14] R.C. Read, An introduction to chromatic polynomials. J. Combin. Theory 4 (1968) 52-71. | Zbl

[15] B.E. Sagan, Inductive and injective proofs of log concavity results. Discrete Math. 68 (1988) 281-292. | Zbl

[16] B.E. Sagan, Inductive proofs of q-log concavity. Discrete Math. 99 (1992) 289-306. | Zbl

[17] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., New York Acad. Sci., New York 576 (1989) 500-535. | Zbl

[18] Y. Wang, Linear transformations preserving log-concavity. Linear Algebra Appl. 359 (2003) 161-167. | Zbl

[19] Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity. Available at arXiv:math.CO/0504164 (2005). To appear in J. Combin. Theory Ser A. | MR | Zbl

[20] Y. Wang and Y.-N. Yeh, Polynomials with real zeros and Pólya frequency sequences. J. Combin. Theory Ser. A 109 (2005) 63-74. | Zbl

[21] D.J.A. Welsh, Matroid theory, L.M.S. Monographs, No. 8. Academic Press, London (1976). | MR | Zbl

[22] H.S. Wilf, Generatingfunctionology. Academic Press Inc., Boston, MA, second edition (1994). | MR | Zbl

Cité par Sources :