Bayesian wavelet de-noising with the caravan prior
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 947-978.

According to both domain expert knowledge and empirical evidence, wavelet coefficients of real signals tend to exhibit clustering patterns, in that they contain connected regions of coefficients of similar magnitude (large or small). A wavelet de-noising approach that takes into account such a feature of the signal may in practice outperform other, more vanilla methods, both in terms of the estimation error and visual appearance of the estimates. Motivated by this observation, we present a Bayesian approach to wavelet de-noising, where dependencies between neighbouring wavelet coefficients are a priori modelled via a Markov chain-based prior, that we term the caravan prior. Posterior computations in our method are performed via the Gibbs sampler. Using representative synthetic and real data examples, we conduct a detailed comparison of our approach with a benchmark empirical Bayes de-noising method (due to Johnstone and Silverman). We show that the caravan prior fares well and is therefore a useful addition to the wavelet de-noising toolbox.

DOI : 10.1051/ps/2019019
Classification : 62F15
Mots-clés : Caravan prior, discrete wavelet transform, Gamma markov chain, Gibbs sampler, regression, wavelet de-noising
Gugushvili, Shota 1 ; van der Meulen, Frank 1 ; Schauer, Moritz 1 ; Spreij, Peter 1

1
@article{PS_2019__23__947_0,
     author = {Gugushvili, Shota and van der Meulen, Frank and Schauer, Moritz and Spreij, Peter},
     title = {Bayesian wavelet de-noising with the caravan prior},
     journal = {ESAIM: Probability and Statistics},
     pages = {947--978},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019019},
     mrnumber = {4046860},
     zbl = {1507.62231},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019019/}
}
TY  - JOUR
AU  - Gugushvili, Shota
AU  - van der Meulen, Frank
AU  - Schauer, Moritz
AU  - Spreij, Peter
TI  - Bayesian wavelet de-noising with the caravan prior
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 947
EP  - 978
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019019/
DO  - 10.1051/ps/2019019
LA  - en
ID  - PS_2019__23__947_0
ER  - 
%0 Journal Article
%A Gugushvili, Shota
%A van der Meulen, Frank
%A Schauer, Moritz
%A Spreij, Peter
%T Bayesian wavelet de-noising with the caravan prior
%J ESAIM: Probability and Statistics
%D 2019
%P 947-978
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019019/
%R 10.1051/ps/2019019
%G en
%F PS_2019__23__947_0
Gugushvili, Shota; van der Meulen, Frank; Schauer, Moritz; Spreij, Peter. Bayesian wavelet de-noising with the caravan prior. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 947-978. doi : 10.1051/ps/2019019. http://archive.numdam.org/articles/10.1051/ps/2019019/

[1] E. Aldrich, Wavelets: A package of functions for computing wavelet filters, wavelet transforms and multiresolution analyses. R package version 0.3-0. https://CRAN.R-project.org/package=wavelets.

[2] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59 (2017) 65–98. | DOI | MR | Zbl

[3] T.T. Cai and B.W. Silverman, Incorporating information on neighbouring coefficients into wavelet estimation. Sankhyā Ser. B 63 (2001) 127–148. | MR | Zbl

[4] C.M. Carvalho, N.G. Polson and J.G. Scott, The horseshoe estimator for sparse signals. Biometrika 97 (2010) 465–480. | DOI | MR | Zbl

[5] A.T. Cemgil and O. Dikmen, Conjugate gamma Markov random fields for modelling nonstationary sources. In M.E. Davies, C.J. James, S.A. Abdallah, M.D. Plumbley (Eds.) Independent Component Analysis and Signal Separation: 7th International Conference, ICA 2007, London, UK, September 9–12, 2007. Proceedings. Springer, Berlin, Heidelberg (2007) pp. 697–705. | DOI | Zbl

[6] A.T. Cemgil, C. Févotte and S.J. Godsill, Variational and stochastic inference for Bayesian source separation. Digit. Signal Process. 17 (2007) 891–913. | DOI

[7] R.R. Coifman and D.L. Donoho, Translation-invariant de-noising. In A. Antoniadis, G. Oppenheim (Eds.) Wavelets and Statistics. Springer, New York (1995), pp. 125–150. | DOI | Zbl

[8] M.S. Crouse, R.D. Nowak and R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46 (1998) 886–902. | DOI | MR

[9] O. Dikmen and A.T. Cemgil, Gamma Markov random fields for audio source modeling. IEEE Trans. Audio, Speech, Language Process. 18 (2010) 589–601. | DOI

[10] D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41 (1995) 613–627. | DOI | MR | Zbl

[11] D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425–455. | DOI | MR | Zbl

[12] D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90 (1995) 1200–1224. | DOI | MR | Zbl

[13] X. Fernández-I-Marín, ggmcmc: Analysis of MCMC samples and Bayesian inference. J. Stat. Softw. 70 (2016) 1–20. | DOI

[14] A.E. Gelfand and A.F.M. Smith, Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85 (1990) 398–409. | DOI | MR | Zbl

[15] S. Ghosal and A. Van Der Vaart, Fundamentals of nonparametric Bayesian inference, vol. 44 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2017). | MR | Zbl

[16] S. Gugushvili, F. Van Der Meulen, M. Schauer and P. Spreij, Code accompanying the paper “Bayesian wavelet de-noising with the caravan prior”. Zenodo (2018). | DOI | Numdam | MR | Zbl

[17] S. Gugushvili, F. Van Der Meulen, M. Schauer and P. Spreij, Fast and scalable non-parametric Bayesian inference for Poisson point processes. Preprint (2018). | arXiv

[18] S. Gugushvili, F. Van Der Meulen, M. Schauer and P. Spreij, Nonparametric Bayesian volatility learning under microstructure noise. Preprint (2018). | arXiv | MR

[19] S. Gugushvili, F. Van Der Meulen, M. Schauer and P. Spreij, Nonparametric Bayesian volatility estimation. Edited by J. De Gier, C.E. Praeger, T. Tao. 2017 MATRIX Annals. Springer International Publishing, Cham (2019) 279–302. | DOI | MR

[20] I. Johnstone and B. Silverman, Ebayesthresh: R programs for empirical Bayes thresholding. J. Stat. Softw. 12 (2005) 1–38. | DOI

[21] I.M. Johnstone and B.W. Silverman, Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. Ann. Statist. 32 (2004) 1594–1649. | DOI | MR | Zbl

[22] I.M. Johnstone and B.W. Silverman, Empirical Bayes selection of wavelet thresholds. Ann. Statist. 33 (2005) 1700–1752. | DOI | MR | Zbl

[23] T.J. Mitchell and J.J. Beauchamp, Bayesian variable selection in linear regression. With comments by James Berger and C.L. Mallows and with a reply by the authors. J. Amer. Statist. Assoc. 83 (1988) 1023–1036. | MR | Zbl

[24] E. Moulines, Discussion on the meeting on ‘Statistical approaches to inverse problems’. J. R. Statist. Soc. B 66 (2004) 628–630.

[25] D.B. Percival and A.T. Walden, Wavelet methods for time series analysis, vol. 4 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2000). | MR | Zbl

[26] G. Peyré and J. Fadili, Group sparsity with overlapping partition functions. In 2011 19th European Signal Processing Conference. IEEE (2011) 303–307.

[27] N.G. Polson and J.G. Scott, Shrink globally, act locally: sparse Bayesian regularization and prediction. With discussions by Bertrand Clark, C. Severinski, Merlise A. Clyde, Robert L. Wolpert, Jim E. Griffin, Philiip J. Brown, Chris Hans, Luis R. Pericchi, Christian P. Robert and Julyan Arbel. In Vol. 9 of Bayesian statistics.  Oxford Univ. Press, Oxford (2011) 501–538. | DOI | MR

[28] M.E. Tipping, Sparse Bayesian learning and the Relevance Vector Machine. J. Mach. Learn. Res. 1 (2001) 211–244. | MR | Zbl

[29] S. Van Der Pas, B. Szabó and A. Van Der Vaart Uncertainty quantification for the horseshoe (with discussion). Bayesian Anal. 12 (2017) 1221–1274. With a rejoinder by the authors. | MR | Zbl

[30] S.L. Van Der Pas, B.J.K. Kleijn and A.W. Van Der Vaart, The horseshoe estimator: posterior concentration around nearly black vectors. Electron. J. Stat. 8 (2014) 2585–2618. | DOI | MR | Zbl

[31] B. Whitcher, waveslim: Basic wavelet routines for one-, two- and three-dimensional signal processing. R package version 1.7.5. Available at: https://CRAN.R-project.org/package=waveslim (2015).

[32] H. Wickham, ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York (2009). | DOI | Zbl

[33] P.J. Wolfe, S.J. Godsill and W.-J. Ng, Bayesian variable selection and regularization for time-frequency surface estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004) 575–589. | DOI | MR | Zbl

Cité par Sources :