@article{RCP25_1973__18__A4_0, author = {Seiler, R.}, title = {Relativistic {Wave} {Equations}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:4}, pages = {1--24}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {18}, year = {1973}, language = {en}, url = {http://archive.numdam.org/item/RCP25_1973__18__A4_0/} }
TY - JOUR AU - Seiler, R. TI - Relativistic Wave Equations JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:4 PY - 1973 SP - 1 EP - 24 VL - 18 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://archive.numdam.org/item/RCP25_1973__18__A4_0/ LA - en ID - RCP25_1973__18__A4_0 ER -
%0 Journal Article %A Seiler, R. %T Relativistic Wave Equations %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:4 %D 1973 %P 1-24 %V 18 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://archive.numdam.org/item/RCP25_1973__18__A4_0/ %G en %F RCP25_1973__18__A4_0
Seiler, R. Relativistic Wave Equations. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de : J. Leray, J.P. Ramis, R. Seiler, J.M. Souriau et A. Voros, Tome 18 (1973), Exposé no. 4, 24 p. http://archive.numdam.org/item/RCP25_1973__18__A4_0/
1) Lectures in Theoretical Physics, Boulder 1967
2)
Proceedings of Fifth Coral Gables Conference 1968 p. 2913) Relativistic Wave Equations as Singular Hyperbolic Systems, Preprint. 1972. | MR | Zbl
4) Phys. Z. 18, 121 (1917)
Ann. d. Phys. 17, 132 (1905) | JFM
5) Ann. Phys. 81, 109 (1926) reprinted in Abhandlungen zur Wellenmechanik, | JFM
Dokumente der Naturwissenschaft Bd. 3, Leipzig 1927.
Dokumente der Naturwissenschaft Bd. 3, Stuttgart 1963.
6)
, and (1926),for a review, Handbuch der Physik 2, Band V, Teil 1, Springer 1958
,7) Z. Phys. 37, 895 (1926), | JFM
Z. Phys. 41, 407 (1927) | JFM
Z. Phys. 40, 117 (1926) | JFM
8) Phys. Rev. 78, 29 (1950)
and ,9) Proc. Roy. Soc. (London) A 117, 610 (1928) | JFM
Proc. Roy. Soc. (London) A 118, 352 (1928)
For a detailed account of the history of the Dirac equation we refer to A. S. Wightman in Aspects of Quantum Theory, Edited by A. Salam and E.P. Wigner (Cambridge University Press, 1972).
10) Proc. Roy. Soc. (London) A 126, 360 (1930) | JFM
Proc. Cambridge Phil. Soc. 26, 361 (1931)
11) Helv. Phys. Acta, 12, 3 (1939) | JFM | Zbl
12) Phys. Rev. 58, 716 (1940) | JFM | Zbl
13) Proc. Roy. Soc. (London) A 173, 211 (1939) | JFM | Zbl
and ,14)
and , unpublished; , unpublished (1943)15) Phys. Rev. 186, 1337 (1969) , 188, 2218 (1969)
and ,16) Math. Ann. 138, 179 (1959)
Comm. Pure Appl. Math. 25, 1 (1972) | MR | Zbl
and ,17) J. Math. Phys. 13, 597 (1972) | Zbl
Indiana University Preprint, Bloomington, Indiana (1972)
18) Phys. Rev. 133, 131-318 (1964)
Fortschr. Physik 10, 65 (1962) | Zbl
19) International School of Elementary Particle Physics, Herceg-Novi, Yugoslavia (1966)
and ,20)
Princeton Thesis 1971, unpublished21) Jour. Math. Phys. 10, 575 (1969)
22) For a most complet review on relativistic wave equations without interaction see ref. 20)
23) see ref. 2) and ref. 30)
Phys. Rev. D 4, 359 (1971) | MR
and ,25) Lettere al Nouovo Cimento
and , to be published in26)
ref. 9) p. 10727)
Université de Provence-Centres Saint-Charles, Thèse; unpublished28) Systèmes lineaires hyperboliques non stricts Colloques CBM Louvain (1964) ; | Zbl
andand Reprint in Battelle Rencontres on Hyperbolic Equations and Waves, Seattle 1968
29)
, in preparation30) Phys. Rev. D 2, 2927 (1970) | Zbl
, and ,31) Spin zero particle in external field, ref. 30).
32) Spin 1/2 particle in external field , Comm. Math. Phys. 25, 127 (1972)
33) Existence already follows from classical theorems by Scale resp. Scale and Stinespring
34) There is a close connection between the kernel comming up in the formal expression for the -matrix in perturbation theory and the fundamental solution resp. of the wave equation (11). where denotes the fundamental solution of the free equation with Feynman boundary conditions. Then is a solution of the equation On the other hand resp. are solutions of the Yang-Feldman equation (12) .
35)
, private communication