@article{RCP25_1992__43__107_0, author = {Majid, Shahn}, title = {Braided {Groups}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:7}, pages = {107--146}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {43}, year = {1992}, language = {en}, url = {http://archive.numdam.org/item/RCP25_1992__43__107_0/} }
TY - JOUR AU - Majid, Shahn TI - Braided Groups JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:7 PY - 1992 SP - 107 EP - 146 VL - 43 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://archive.numdam.org/item/RCP25_1992__43__107_0/ LA - en ID - RCP25_1992__43__107_0 ER -
%0 Journal Article %A Majid, Shahn %T Braided Groups %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:7 %D 1992 %P 107-146 %V 43 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://archive.numdam.org/item/RCP25_1992__43__107_0/ %G en %F RCP25_1992__43__107_0
Majid, Shahn. Braided Groups. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de A. Aspect, B. Carter, R. Coquereaux, G.W. Gibbons, Ch. Kassel, Y. Kosman-Schwarzbach, S. Majid, G. Maltsiniotis, P. Pansu, G.A. Vilkovisky, Z. Wojtkowiak, Tome 43 (1992), Exposé no. 7, 40 p. http://archive.numdam.org/item/RCP25_1992__43__107_0/
[1] Non-commutative differential geometry. Technical Report 62, IHES, 1986. | Numdam | Zbl
.[2] On closed categories of functors. Number 137 in Lec. Notes in Math. Springer, 1969. | MR | Zbl
.[3] Tannakian categories. Number 900 in Lec. Notes in Math. Springer, 1982. | Zbl
and .[4] Quantum groups. In A. Gleason, editor, Proceedings of the ICM, pages 798-820, Rhode Island, 1987. AMS. | MR | Zbl
.[5] Braided compact closed categories with applications to low dimensional topology. Adv. Math., 77:156-182, 1989. | MR | Zbl
and .[6] Theorie des topos et cohomologie etale des schemas (sga 4). Number 269 in Lec. Notes Math. Springer, 1972. | MR
and .[7] The Yang-Baxter equations and a generalization of formal Lie theory. In D. Leites, editor, Seminar on Supermanifolds, No. 4, number 24 in Stockholm Mathematics Reports, pages 33-123. 1986. | MR | Zbl
.[8] Braided monoidal categories. Mathematics Reports 86008, Macquarie University, 1986. | Zbl
and .[9] The geometry of tensor calculus, I. Adv. Math., 88:55-112, 1991. | MR | Zbl
and .[10] Categories for the Working Mathematician. Springer, 1974. GTM vol. 5. | MR | Zbl
.[11] Tangles and hopf algebras in braided categories. Preprint, 1991. | MR | Zbl
.[12] Braided groups and algebraic quantum field theories. Lett. Math. Phys., 22: 167-176, 1991 ; | MR | Zbl
.Some physical applications of category theory, in C. Bartocci et al editors, Lecture Notes in Physics 375:131-142, 1990. | MR | Zbl
.[13] Doubles of quasitriangular Hopf algebras. Comm. Algebra, 19:3061-3073, 1991. | MR | Zbl
.[14] Examples of braided groups and braided matrices. J. Math. Phys. 32:3246- 3253, 1991. | MR | Zbl
.[15] Quantum groups and quantum probability. In L. Accardi et al, editors, Quantum Probability and Related Topics VI, Proc. Trento, 1989. World Sci. | MR | Zbl
.[16] Rank of quantum groups and braided groups in dual form. In Proc. of the Euler Institute, October 1990. To appear. | MR | Zbl
.[17] Reconstruction theorems and rational conformal field theories, 1989. To appear Int. J. Mod. Phys. | MR | Zbl
.[18] Representations, duals and quantum doubles of monoidal categories, 1989. To appear Suppl. Rend. Circ. Mat. Palermo. | MR | Zbl
.[19] Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A, 5(1):1-91, 1990. | MR | Zbl
.[20] Cross products by braided groups and bosonization, 1991. To appear J. Algebra. | MR | Zbl
.[21] Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10, 1991. | MR | Zbl
.[22] Accessible categories: the foundations of categorical model theory. AMS 1989. | MR | Zbl
and .[23] Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal, 1988. | MR | Zbl
.[24] Morita equivalence of module categories with tensor products. Comm. Algebra, 9:1455, 1981. | MR | Zbl
.[25] A non-commutative non-cocommutative Hopf algebra in nature. J. Algebra, 70:356, 1981. | Zbl
.[26] On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. | MR | Zbl
.[27] Catégories tannakiennes. Springer Lect. Notes in Math, 265, 1972. | MR | Zbl
.[28] Hopf algebras and Lie algebras in categories with multiplication. Preprint, 1978. In Russian.
.[29] Hopf Algebras. Benjamin, 1969. | MR | Zbl
.[30] On Hopf algebras and rigid monoidal categories. Israel J. Math, 72:252, 1990. | MR | Zbl
.[31] Quantum groups and representations of monoidal categories. Math. Proc. Camb. Phil. Soc., 108:261, 1990. | MR | Zbl
.