À propos de mathématiques
Mathematical models for the structure and self-assembly of viruses
Femmes & math, Forum 8 des Jeunes Mathématiciennes, Tome 8 (2006), pp. 83-87.

Viruses have a protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. The distribution of the proteins in the capsids is highly structured and follows an organisational principle that can be described based on group theory and tiling theory. It provides a basis for mathematical models that address the self-assembly of the capsids from their capsid proteins, and may ultimately be used to assist the design of anti-viral therapeutics.

Publié le :
Twarock, Reidun 1

1 Departments of Mathematics and Biology University of York York YO10 5DD, UK
@article{RFM_2006__8__83_0,
     author = {Twarock, Reidun},
     title = {Mathematical models for the structure and self-assembly of viruses},
     journal = {Femmes & math},
     pages = {83--87},
     publisher = {Association femmes et math\'ematiques},
     volume = {8},
     year = {2006},
     language = {en},
     url = {http://archive.numdam.org/item/RFM_2006__8__83_0/}
}
TY  - JOUR
AU  - Twarock, Reidun
TI  - Mathematical models for the structure and self-assembly of viruses
JO  - Femmes & math
PY  - 2006
SP  - 83
EP  - 87
VL  - 8
PB  - Association femmes et mathématiques
UR  - http://archive.numdam.org/item/RFM_2006__8__83_0/
LA  - en
ID  - RFM_2006__8__83_0
ER  - 
%0 Journal Article
%A Twarock, Reidun
%T Mathematical models for the structure and self-assembly of viruses
%J Femmes & math
%D 2006
%P 83-87
%V 8
%I Association femmes et mathématiques
%U http://archive.numdam.org/item/RFM_2006__8__83_0/
%G en
%F RFM_2006__8__83_0
Twarock, Reidun. Mathematical models for the structure and self-assembly of viruses. Femmes & math, Forum 8 des Jeunes Mathématiciennes, Tome 8 (2006), pp. 83-87. http://archive.numdam.org/item/RFM_2006__8__83_0/

[1] Caspar, D.L.D & Klug, A. (1962) Physical Principles in the Construction of Regular Viruses. Cold Spring Harbor Symp. Quant. Biol. 27, pp. 1.

[2] Twarock, R. (2004), A tiling approach to virus capsid assembly explaining a structural puzzle in virology, J. Theor. Biol. 226, pp. 477. | MR

[3] R. Twarock (2005) The architecture of viral capsids based on tiling theory, J. Theor. Medicine 6, pp. 87. | Zbl

[4] Keef, T. and Twarock, R. (2005) A novel family of polyhedra as blueprints for viral capsids in the family of Papovaviridae, submitted to J. Math. Biol..

[5] Twarock, R. (2005) Mathematical models for tubular structures in the family of Papovaviridae, Bull. Math. Biol. 67, pp. 973. | MR

[6] Senechal, M. 1996 Quasicrystals and Geometry, Cam. Univ. Press. | MR | Zbl

[7] Shechtman, D. et al. 1984 Metallic phase with long-range order and no translational symmetry. Phys. Rev. Lett. 53, 1951-1953.

[8] Penrose, R. 1974 Pentaplexity. Bulletin of the Institute for Mathematics and Applications 10, 266-271.

[9] Keef, T., Taormina, A. and Twarock, R. (2005) Assembly Models for Papovaviridae based on Tiling Theory, Phys. Biol. 2, pp.175.

[10] Keef, T., Micheletti, C. and Twarock, R. (2005) Master equation approach to the assembly of viral capsids, to appear in J. Theor. Biol. | MR

[11] Helgstrand, Ch. et al. 2003 The Refined Structure of a Protein Catenane: The HK97 Bacteriophage Capsid at 3.44Å Resolution. J. Mol. Biol. 334, 885-899.

[12] Twarock, R. and Hendrix, R. (2005) Crosslinking in Viral Capsids via Tiling Theory, J. Theor. Biol., in press | MR

[13] Jonoska, N. and Twarock, R. (2006) A Note on Genome Organisation in RNA Viruses with Icosahedral Symmetry, in preparation.