Problème de la bipartition minimale d'un graphe
RAIRO - Operations Research - Recherche Opérationnelle, Volume 21 (1987) no. 4, pp. 325-348.
@article{RO_1987__21_4_325_0,
     author = {Roucairol, Catherine and Hansen, Pierre},
     title = {Probl\`eme de la bipartition minimale d'un graphe},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {325--348},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {1987},
     mrnumber = {932183},
     zbl = {0628.90049},
     language = {fr},
     url = {http://archive.numdam.org/item/RO_1987__21_4_325_0/}
}
TY  - JOUR
AU  - Roucairol, Catherine
AU  - Hansen, Pierre
TI  - Problème de la bipartition minimale d'un graphe
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1987
SP  - 325
EP  - 348
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1987__21_4_325_0/
LA  - fr
ID  - RO_1987__21_4_325_0
ER  - 
%0 Journal Article
%A Roucairol, Catherine
%A Hansen, Pierre
%T Problème de la bipartition minimale d'un graphe
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1987
%P 325-348
%V 21
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1987__21_4_325_0/
%G fr
%F RO_1987__21_4_325_0
Roucairol, Catherine; Hansen, Pierre. Problème de la bipartition minimale d'un graphe. RAIRO - Operations Research - Recherche Opérationnelle, Volume 21 (1987) no. 4, pp. 325-348. http://archive.numdam.org/item/RO_1987__21_4_325_0/

1. E. R. Barnes, An Algorithm for Partitioning the Notes of a Graph, S.I.A.M. J. Alg. Disc. Meth., vol., n° 4, 1982, p. 541-550. | MR | Zbl

2. P. Chaillou, P. Hansen et Y. Mahieu, Best Network Flow Bounds for the Quadratic Knapsack Problem, Presented at NETFLOW 83 International Workshop, Pisa, Italy, 1983. | Zbl

3. N. Christofidès et P. Brooker, The Optimal Partitioning of Graphs, S.I.A.M. J. Apl. Math., vol. 30, n° 1, 1976, p. 55-70. | MR | Zbl

4. M. Garey, E. Johnson et Stockmeyer, Some Simplified NP-Complete Problems, Theoretical Computer Science, vol. 1, 1976, p. 237-267. | MR | Zbl

5. P.L. Hammer (Ivanescu), Some Network Flow Problems Solved by Pseudo-Boolean Programming, Operations Research, vol. 13, 1965, p. 388-299. | MR | Zbl

6. A. V. Karzanov, Determining the Maximal Flow in at Network by the Method of Preflows, Soviet. Math. Dokl., vol. 15, 1974, p. 434-437. | Zbl

7. M. Minoux Programmation Mathématique, t. 1, C.N.E.T., E.N.S.T., Dunod, Paris, 1983. | Zbl

8. V. M. Malhorta, M. P. Kumar et S. N. Maheshwari, An Algorithm for Finding Maximum Flow in Networks, Information Processing Letters, vol.7-6, 1978, p. 277-278. | MR | Zbl

9. A. Nijenhuis et H. S. Wilf, Combinatorial Algorithms, Second Edition, Academic Press, New York, 1978. | MR | Zbl

10. J. C. Picard et M. Queyranne, Networks, Graphs and Some Non Linear 0.1 Programming Problems, Tech. Rep. EP77-R-32, École Polytechnique de Montréal, Canada, , 1977.

11. J. C. Picard et H. D. Ratliff, Minimum Cuts and Related Problems, Networks, vol. 5, 1975, p. 357-370. | MR | Zbl

12. J. C. Picard et H. D. Ratliff, A Cut Approach to a Class of Quadratic Integer Programming Problems, Networks, vol. 10, 1980, p. 363-370. | MR | Zbl

13. P. Siarry, La méthode du Recuit Simulé : application à la conception de circuits électroniques, Thèse de Doctorat de l'Université Paris-VI, Spécialités : Sciences Physiques, Paris, novembre 1986.