An 0(n 3 ) worst case bounded special LP knapsack (0-1) with two constraints
RAIRO - Operations Research - Recherche Opérationnelle, Tome 22 (1988) no. 1, pp. 27-32.
@article{RO_1988__22_1_27_0,
     author = {Campello, Ruy E. and Maculan, Nelson},
     title = {An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {27--32},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {1988},
     mrnumber = {943104},
     zbl = {0662.90052},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1988__22_1_27_0/}
}
TY  - JOUR
AU  - Campello, Ruy E.
AU  - Maculan, Nelson
TI  - An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1988
SP  - 27
EP  - 32
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1988__22_1_27_0/
LA  - en
ID  - RO_1988__22_1_27_0
ER  - 
%0 Journal Article
%A Campello, Ruy E.
%A Maculan, Nelson
%T An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1988
%P 27-32
%V 22
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1988__22_1_27_0/
%G en
%F RO_1988__22_1_27_0
Campello, Ruy E.; Maculan, Nelson. An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 22 (1988) no. 1, pp. 27-32. http://archive.numdam.org/item/RO_1988__22_1_27_0/

1. R. E. Campello and N. Maculan, A Lower Bound to the Set Partitioning Problem with Side Constraints, DRC-70-20-3, Design Research Center Report Series, Carnegie-Mellon University, Pittsburg, Pennylvania, 15213, U.S.A., 1983.

2. K. Dudzinski and S. Walukiewicz, Exact Methods for the Knapsack Problem and its Generalizations, European Journal of Operational Research (EJOR), Vol. 28, No. 1, 1987, pp. 3-21. | MR | Zbl

3. M. E. Dyer, A Geometric Approach to Two-Constraint Linear Programs with Generalized Upper Bounds, Advances in Computing Research, Vol. 1, 1983, pp. 79-90, JAI Press.

4. M. E. Dyer, An O (n) Algorithm for the Multiple-Choice Knapsack Linear Program, Mathematical Programming, Vol. 29, No. 1, 1984, pp. 57-63. | MR | Zbl

5. E. L. Johnson and M. G. Padberg, A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters, Vol 1, No. 1, 1981, pp. 18-22. | MR | Zbl

6. D. E. Muller and F. P. Preparata, Finding the Intersection of Two Convex Polyhedra, Theoretical Computer Sciences, Vol. 7, 1978, pp. 217-238. | MR | Zbl

7. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., U.S.A., 1970. | MR | Zbl

8. E. Zemel, The Linear Multiple Choice Knapsack Problem, Operations Research, Vol. 28, No. 6, November-December, 1980, pp. 1412-1423. | MR | Zbl