A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms
RAIRO - Operations Research - Recherche Opérationnelle, Volume 22 (1988) no. 4, p. 313-330
@article{RO_1988__22_4_313_0,
     author = {Idrissi, H. and Lefebvre, O. and Michelot, C.},
     title = {A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {1988},
     pages = {313-330},
     zbl = {0663.90026},
     mrnumber = {978818},
     language = {en},
     url = {http://www.numdam.org/item/RO_1988__22_4_313_0}
}
Idrissi, H.; Lefebvre, O.; Michelot, C. A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms. RAIRO - Operations Research - Recherche Opérationnelle, Volume 22 (1988) no. 4, pp. 313-330. http://www.numdam.org/item/RO_1988__22_4_313_0/

1. J. ChatelonD. Hearn and T. J. Lowe, A Subgradient Algorithm for Certain Minimax and Minisum Problems. The Constrained Case, S.I.A.M. Journal on Control and Qptimization, Vol. 20, 1982, pp. 455-469. | MR 661026 | Zbl 0498.49020

2. P. Hansen, D. Peeters and J. F. Thisse, Constrained Location and the Weber-Rawls Problem, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 147-166. | MR 653823 | Zbl 0469.90027

3. P. Hansen, D. Peeters and J. F. Thisse, An Algorithm for Constrained Weber Problem, Management Science, Vol. 28, No. 11, 1982, pp. 1285-1295. | Zbl 0512.90038

4. H. Juel and R. F. Love, On the Dual of the Linearly Constrained Multifacility Location Problem with Arbitrary Norms, Transportation Science, Vol. 25, 1981, pp. 329-337. | MR 638464

5. P. J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972. | MR 467080 | Zbl 0238.90058

6. O. Lefebvre and C. Michelot, Calcul d'un point fixe d'une application prox par la méthode des approximations successives; condition de convergence finie, Comptes rendus de l'Académie des Sciences de Paris, T. 303, série I, No. 17, 1986. | MR 870918 | Zbl 0607.65030

7. R. F. Love, Locating Facilities in Three-Dimensional Space by Convex Programming, Naval Research Logistics Quaterly, Vol. 16, 1969, pp. 503-516. | MR 260430 | Zbl 0194.20805

8. R. F. Love, The Dual of a Hyperbolic Approximation to the Generalized Constrained Multi-Facility Location Problem with lp Distances, Management Science, Vol. 21, No. 1, 1974, pp, 22-33. | MR 439161 | Zbl 0311.90062

9. R. F. Love and S. A. Kraemer, A Dual Decomposition Method for Minimizing Transportation Costs in Multi-facility Location Problems, Transportation Science, Vol. 7, 1973, pp. 297-316. | MR 343874

10. R. F. Love and J. G. Morris, Solving Constrained Multi-facility Location Problems Involving lp Distances Using Convex Programming, Operations Research, Vol. 23, 1975, pp. 581-587. | MR 444034 | Zbl 0311.90043

11. C. Michelot and O. Lefebvre, A Primal-dual Algorithm for the Fermat-Weber Problem Involving Mixed Gauges, Mathematical Programming, Vol. 39, 1987, pp. 319-335. | MR 918873 | Zbl 0641.90034

12. R. Mifflin, A Stable Method for Solving Certain Constrained Least Squares Problems, Mathematical Programming, Vol. 16, 1974, pp. 141-158. | MR 527571 | Zbl 0407.90065

13. J. G. Morris, A Linear Programming Solution to the Generalized Rectangular Distance Weber Problem, Naval Research Logistics Quaterly, Vol. 22, 1975, pp. 155-164. | MR 384116 | Zbl 0305.90063

14. R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, Princeton University Press, 1970. | Zbl 0932.90001

15. R. T. Rockafellar, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathematics, S.I.A.M., 1974. | MR 373611 | Zbl 0296.90036

16. M. K. Schaefer and A. P. Hurter, An Algorithm for the Solution of a Location Problem with Metric Constraints, Naval Research Logistics Quaterly, Vol. 21, 1974, pp. 625-636. | MR 363488 | Zbl 0298.90063

17. J. E. Spingarn, Partial Inverse of a Monotone Operator, Applied Mathematics and Optimization, Vol. 10, 1983, pp. 247-265. | MR 722489 | Zbl 0524.90072

18. C. D. T. Watson-Gandy, The Solution of Distance Constrained Mini-Sum Location Problems, Operations Research, Vol. 33, 1985, pp. 784-802. | MR 797886 | Zbl 0569.90020

19. G. O. Wesolowsky and R. F. Love, The Optimal Location of New Facilities Using Rectangular Distances, Operations Research, Vol. 19, 1971, pp. 124-130. | MR 384089 | Zbl 0216.54102