Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 237-267.
@article{RO_1992__26_3_237_0,
     author = {El Ghali, A.},
     title = {M\'ethode du sous-gradient r\'eduit g\'en\'eralis\'e comme extension du {GRG} {d'Abadie} au cas non diff\'erentiable},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {237--267},
     publisher = {EDP-Sciences},
     volume = {26},
     number = {3},
     year = {1992},
     mrnumber = {1179623},
     zbl = {0772.90069},
     language = {fr},
     url = {http://archive.numdam.org/item/RO_1992__26_3_237_0/}
}
TY  - JOUR
AU  - El Ghali, A.
TI  - Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1992
SP  - 237
EP  - 267
VL  - 26
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1992__26_3_237_0/
LA  - fr
ID  - RO_1992__26_3_237_0
ER  - 
%0 Journal Article
%A El Ghali, A.
%T Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1992
%P 237-267
%V 26
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1992__26_3_237_0/
%G fr
%F RO_1992__26_3_237_0
El Ghali, A. Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable. RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 237-267. http://archive.numdam.org/item/RO_1992__26_3_237_0/

1. J. Abadie et J. Carpentier, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, In Optimization, R. FLETCHER ed., London Academic, 1969. | MR | Zbl

2. A. Bihain, V. H. Nguyen et J. J. Strodiot, A Reduced Subgradient Algorithm, Math. Programming Study, 1987, 30, pp. 127-149. | MR | Zbl

3. A. Bihain, Numerical and Algorithmic Contributions to the Constrained Optimization of Some Classes of Non-Differentiable Functions, Ph. D. Thesis, F.U.N.D.P., Namur, Belgium, 1984.

4. E. K. Blum, Numerical Analysis and Computation, Theory and Practice, Addison-Wesley, New York, 1972. | MR | Zbl

5. J. A. Chatelon, D. W. Hearn et J. J. Lowe, A Subgradient Algorithm for Certain Minimax and Minisum Problems, S.I.A.M., J. Control Optim., S.I.A.M., J. Control Optim., 1982,20, pp. 455-469. | MR | Zbl

6. M. Gaudioso et M. F. Monaco, A Bundle Type Approach to the Unconstrained Minimization of Convex Nonsmooth Functions, Math. Programming, 1982, 23, pp. 216-226. | MR | Zbl

7. W. Gochet et Y Smeers, A Modified Reduced Gradient Method for a Class of Nondifferentiable Problems, Math. Programming, 1980, 19, pp. 137-154. | MR | Zbl

8. P. Huard, Convergence of the Reduced Gradient Method, In Nonlinear Programming, O. L. MANGASARIAN, R. R. MEYER et S. M. ROBINSON, éd., Academic Press, New York, 1975, 2, pp. 29-54. | MR | Zbl

9. P. Huard, Un algorithme général de gradient réduit, Bulletin de la Direction des Études et Recherches, E.D.F., 1980, Série C, 2, pp. 91-109. | MR | Zbl

10. C. Lemaréchal et R. Mifflin, Nonsmooth optimization, Pergamon Press, New York, 1977. | MR | Zbl

11. C. Lemaréchal, Extensions diverses des méthodes de gradients et applications, Thèse d'État, Paris-IX Dauphine, Paris, 1980.

12. C. Lemaréchal, An Extension of Davidon Methods to Non-Differentiable Problems, Math. Programming Study, 1975, 3, pp. 95-109. | MR | Zbl

13. C. Lemaréchal, J. J. Strodiotet A. Bihain, On a Bundle Algorithm for Nonsmooth Optimization, In Nonlinear Programming, O. L. MANGASARIAN, R. R.MEYER et S. M. ROBINSON éd., Academic Press, New York, 1981, 4, pp. 245-282. | MR | Zbl

14. C. Lemaréchal A View of Line Search, In Lecture Notes in Control and Information Science A. AUSLENDER, W. OETTLLI et J. STOER, éd., Springer, Berlin, 1981. | MR | Zbl

15. D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Academic Press, New York, 1973. | Zbl

16. R. Mifflin A Stable Method for Solving Certain Constrained Least Squares Problems, Math. Programming, 1979, 16, pp. 141-158. | MR | Zbl

17. R. Mifflin An Algorithm for Constrained Optimization with Semi Smooth Functions, Math. Oper. Res., 1977, 2, pp. 191-207. | MR | Zbl

18. R. Mifflin, Convergence of a Modification of Lemaréchal's Algorithm for non Smooth Optimization, In Progress in non differentiable Optimization, E. A.Nurminski ed., I.I.A.S.A., Laxenburg, Austria, 1982. | Zbl

19. H. Mokhtar-Kharroubi, Sur la convergence théorique de la méthode du gradient réduit généralisé, Numer. Math., 1980, 34, pp. 73-85. | MR | Zbl

20. H. Mokhtar-Kharroubi, Sur quelques méthodes de gradient réduit sous contraintes linéaires, R.A.I.R.O., Anal. Numér., 1979, 13, n° 2, pp. 167-180. | Numdam | MR | Zbl

21. Y. Smeers, Generalized Reduced Gradient Method as an Extension of Feasible Directions Methods, J. Optim. Theory Appl., 1977, 22, n° 2, pp. 209-226. | MR | Zbl

22. J. J. Strodiot, V. H. Nguyen et N. Heukemes, ε-Optimal Solutions in non Differentiable Convex Programming and some Related Questions, Math. Programming, 1983, 25, pp. 307-328. | MR | Zbl

23. P. Wolfe, Reduced Gradient Method, Rand Document, June 1962.

24. P. Wolfe, On the Convergence of Gradient Methods under Constraints, I.B.M. Journal, 1972, pp. 407-411. | MR | Zbl

25. P. Wolfe, Convergence Conditions for Ascent Methods, S.I.A.M. Review, 1969,11, pp. 226-234. | MR | Zbl

26. P. Wolfe, A Method for Conjugate Subgradients for Minimizing non Differentiable Functions, Math. Programming Study, 1975, 3, pp. 145-173. | MR | Zbl

27. W. Zangwill, The Convex-Simplex Methods, Management Sci., 1967, 14, pp. 221-238. | MR | Zbl