An algorithm for indefinite quadratic programming based on a partial Cholesky factorization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 27 (1993) no. 4, pp. 401-426.
@article{RO_1993__27_4_401_0,
     author = {Casas, E. and Pola, C.},
     title = {An algorithm for indefinite quadratic programming based on a partial {Cholesky} factorization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {401--426},
     publisher = {EDP-Sciences},
     volume = {27},
     number = {4},
     year = {1993},
     mrnumber = {1250365},
     zbl = {0795.90048},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1993__27_4_401_0/}
}
TY  - JOUR
AU  - Casas, E.
AU  - Pola, C.
TI  - An algorithm for indefinite quadratic programming based on a partial Cholesky factorization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1993
SP  - 401
EP  - 426
VL  - 27
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1993__27_4_401_0/
LA  - en
ID  - RO_1993__27_4_401_0
ER  - 
%0 Journal Article
%A Casas, E.
%A Pola, C.
%T An algorithm for indefinite quadratic programming based on a partial Cholesky factorization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1993
%P 401-426
%V 27
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1993__27_4_401_0/
%G en
%F RO_1993__27_4_401_0
Casas, E.; Pola, C. An algorithm for indefinite quadratic programming based on a partial Cholesky factorization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 27 (1993) no. 4, pp. 401-426. http://archive.numdam.org/item/RO_1993__27_4_401_0/

1. J. R. Bunch and L. Kaufman, A Computational Method for the Indefinite Quadratic Programming Problem, Linear Algebra andits App., 1980, 34, pp. 341-370. | MR | Zbl

2. J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979. | Zbl

3. R. Fletcher, A General quadratic programming, J, Institute of Math. and its Appl., 1971, 7, pp. 76-91. | MR | Zbl

4. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Chichester and New York, second edition, 1987. | MR | Zbl

5. A. L. Forsgren, P. E. Gill and W. Murray, On the identificaiton of local minimizers in inertia-controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl., 1991, 12, pp.730-746. | MR | Zbl

6. P. E. Gill, G. H. Golub, W. Murray and M. A. Saunders, Methods for modifying matrix factorizations, Mathematics of Camputation, 1974, 28, (126), pp. 505-535. | MR | Zbl

7. P. E. Gill and W. Murray, Numerically stable methods for quadratic programing, Math. Programming, 1978, 14, pp. 349-372. | MR | Zbl

8. P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Inertia-controlling methods for quadratic programming, SIAM Review, 1991, 33, pp. 1-36 | MR | Zbl

9. P. E. Gill, W. Murray and M. H. Wright, Pratical Optimization, Academic Press, London and NewYork, 1981. | MR | Zbl

10. W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture in Economics and Mathematical Systems, Springer-Verlag, Berlin, Heidelberg and NewYork, 1981. | MR | Zbl

11. C. Pola, Algorithmos Numéricos para la resolución de problemas de optimización con restricciones, Ph. D. thesis, Dpto. Matemáticas, Estadística y Computación, Uniersidad de Cantabrian, Spain, 1992.

12. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965. | MR | Zbl