@article{RO_2000__34_3_283_0, author = {Humes Jr., Carlos and Da silva E Silva, Paulo Jos\'e}, title = {Strict convex regularizations, proximal points and augmented lagrangians}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {283--303}, publisher = {EDP-Sciences}, volume = {34}, number = {3}, year = {2000}, mrnumber = {1786463}, zbl = {1029.90069}, language = {en}, url = {http://archive.numdam.org/item/RO_2000__34_3_283_0/} }
TY - JOUR AU - Humes Jr., Carlos AU - Da silva E Silva, Paulo José TI - Strict convex regularizations, proximal points and augmented lagrangians JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2000 SP - 283 EP - 303 VL - 34 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/RO_2000__34_3_283_0/ LA - en ID - RO_2000__34_3_283_0 ER -
%0 Journal Article %A Humes Jr., Carlos %A Da silva E Silva, Paulo José %T Strict convex regularizations, proximal points and augmented lagrangians %J RAIRO - Operations Research - Recherche Opérationnelle %D 2000 %P 283-303 %V 34 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/RO_2000__34_3_283_0/ %G en %F RO_2000__34_3_283_0
Humes Jr., Carlos; Da silva E Silva, Paulo José. Strict convex regularizations, proximal points and augmented lagrangians. RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 3, pp. 283-303. http://archive.numdam.org/item/RO_2000__34_3_283_0/
1. Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 (1997) 43-62. | MR | Zbl
, and ,2. Constrained Optimization and Lagrange Multipliers. Academic Press, New York (1982). | MR
,3. Nonlinear Programming. Athena Scientific (1995). | Zbl
,4. The proximal minimization algorithms with D-functions. J. Optim. Theory Appl. 73 (1992) 451-464. | MR | Zbl
and ,5. A necessary and sufficient condition to have bounded multipliers in nonconvex programming. Math. Programming 12 (1977) 136-138. | MR | Zbl
,6. Duality in non-linear programming, a simplified applications-oriented development. SIAM Rev. 13 (1971) 65-101. | MR | Zbl
,7. Convex analysis and minimization algorithms. II. Advanced theory and bundle methods. Springer-Verlag, Berlin (1993). | MR | Zbl
and ,8. An inexact classical proximal point algorithm viewed as a descent method in the optimization case. Technical Report RT-MAC 99-10. Instituto de Matemática e Estatística - USP (1999).
and ,9. Some comments on Lagrangian duality, optimality conditions and convexity. Investigación Oper. 2 (1991) 159-169.
,10. Métodos de Ponto Proximal em Otimização. Instituto de Matemática Pura e Aplicada - CNPq (1995). Book from the 20° Colóquio Brasileiro de Matemática.
,11. On the convergence rate of entropic proximal minimization algorithms. Comput. Appl. Math. 12 (1993) 153-168. | MR | Zbl
and ,12. Entropy-like proximal methods in covex programming. Math. Oper. Res. 19 (1994) 790-814. | MR | Zbl
, and ,13. Approximation et Optimisation. Collection Enseignement des Sciences. Hermann (1972). | MR | Zbl
,14. Régularisation d'inéquations variationelles par approximations successives. Rev. Française Inf. Rech. Oper. (1970) 154-159. | Numdam | MR | Zbl
,15. Détermination approché d'un point fixe d'une application pseudo-contractante, C.R. Acad. Sci. Paris 274A (1972) 163-165. | MR | Zbl
,16. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273-299. | Numdam | MR | Zbl
,17. Extension of Fenchel's duality theorem for convex functions. Duke Math. J. 33 (1966) 81-89. | MR | Zbl
,18. Convex Analysis. Princeton University Press (1970). | MR | Zbl
,19. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976) 97-116. | MR | Zbl
,20. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 887-898. | MR | Zbl
,21. Variational analysis [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 (1998). | MR | Zbl
and ,22. A hybrid projection-proximal point algorithm. J. Convex Anal. 6 (1999). | MR | Zbl
and ,23. An inexact hybrid extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis (to appear). | MR | Zbl
and ,24. Entropic proximal methods with aplications to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. | MR | Zbl
,25. An elementary survey of general duality theory in mathematical programming. Math. Programming 20 (1981) 241-261. | MR | Zbl
and ,