The interpreted type-free modal calculus MC
Rendiconti del Seminario Matematico della Università di Padova, Tome 51 (1974), pp. 1-25.
@article{RSMUP_1974__51__1_0,
     author = {Bressan, A.},
     title = {The interpreted type-free modal calculus $MC^{\infty }$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {1--25},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {51},
     year = {1974},
     zbl = {0304.02009},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1974__51__1_0/}
}
TY  - JOUR
AU  - Bressan, A.
TI  - The interpreted type-free modal calculus $MC^{\infty }$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1974
SP  - 1
EP  - 25
VL  - 51
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1974__51__1_0/
LA  - en
ID  - RSMUP_1974__51__1_0
ER  - 
%0 Journal Article
%A Bressan, A.
%T The interpreted type-free modal calculus $MC^{\infty }$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1974
%P 1-25
%V 51
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1974__51__1_0/
%G en
%F RSMUP_1974__51__1_0
Bressan, A. The interpreted type-free modal calculus $MC^{\infty }$. Rendiconti del Seminario Matematico della Università di Padova, Tome 51 (1974), pp. 1-25. http://archive.numdam.org/item/RSMUP_1974__51__1_0/

[1] Or briefly [GIMC]: A. Bressan, A general interpreted modal calculus, Yale Press, New Haven (1972), pp. 325. | MR | Zbl

[2] A. Bressan, The interpreted type-free modal calculus MC∞, Part 1: The type-free extensional calculus EC∞ involving individuals, and the interpreted language ML∞ on which MC∞ is based, Rend. Sem. Mat. Univ. di Padova, 49 (1973), p. 157; Part. 2: Foundations of MC∞, Rend. Sem. Mat. Univ. Padova, 50 (1973), p. 19. | Numdam | Zbl

[3] E. Mendelson, Introduction to mathematical logic, Van Nostrand, New York (1963), pp. 300. | MR | Zbl

[4] Or briefly [IST]: J.D. Monk, Introduction to set theory, Mc Graw-Hill book Co., New York (1969), pp. 193. | MR | Zbl