@article{RSMUP_1981__65__119_0, author = {Unterholzner, Paola}, title = {Algebraic and relational semantics for tense logics}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {119--128}, publisher = {Seminario Matematico of the University of Padua}, volume = {65}, year = {1981}, mrnumber = {653288}, zbl = {0482.03006}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1981__65__119_0/} }
TY - JOUR AU - Unterholzner, Paola TI - Algebraic and relational semantics for tense logics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1981 SP - 119 EP - 128 VL - 65 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1981__65__119_0/ LA - en ID - RSMUP_1981__65__119_0 ER -
%0 Journal Article %A Unterholzner, Paola %T Algebraic and relational semantics for tense logics %J Rendiconti del Seminario Matematico della Università di Padova %D 1981 %P 119-128 %V 65 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1981__65__119_0/ %G en %F RSMUP_1981__65__119_0
Unterholzner, Paola. Algebraic and relational semantics for tense logics. Rendiconti del Seminario Matematico della Università di Padova, Tome 65 (1981), pp. 119-128. http://archive.numdam.org/item/RSMUP_1981__65__119_0/
[1] Distributive lattices, University of Missouri Press, 1974. | MR | Zbl
- ,[2] The unprovability of consistency. An essay in modal logic, Cambridge University Press, 1979. | MR | Zbl
,[3] Universal Algebra, Van Nostrand, 1968. | MR | Zbl
,[4] Boolean algebras with operators, Amer. J. Math., 73 (1951), ppM891-939. | Zbl
- ,[5] 3 Klassische und Nichtklassische Aussagenlogik, Vieweg, 1979. | MR | Zbl
,[6] Completeness and correspondence in the first and second order semantics for modal logic, Proceedings of the Third Scandinavian Logic Symposium, ed. S. Kanger, North Holland, 1975, pp. 110-143. | MR | Zbl
,[7] Topology and categorical duality in the study of semantics for modal logics, submitted to J. Philos. Logic.
,[8] A modal sequent caclculus for a fragment of arithmetic, Stud. Logica, to appear. | MR | Zbl
- ,[9] The derivability condition and Loeb's Theorem, a shourt course in modal logic, manuscript, Heidelberg, 1976.
,[10] Semantic analysis of tense logic, J. Symbolic Logic, 37 (1972), pp. 155-158. | MR | Zbl
,