Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
Rendiconti del Seminario Matematico della Università di Padova, Volume 91 (1994), p. 251-263
@article{RSMUP_1994__91__251_0,
     author = {Greco, Carlo},
     title = {Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {91},
     year = {1994},
     pages = {251-263},
     zbl = {0807.53055},
     mrnumber = {1289640},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1994__91__251_0}
}
Greco, Carlo. Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds. Rendiconti del Seminario Matematico della Università di Padova, Volume 91 (1994) pp. 251-263. http://www.numdam.org/item/RSMUP_1994__91__251_0/

[1] A. Amrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381. | MR 370183 | Zbl 0273.49063

[2] V. Benci - D. Fortunato, Periodic trajectories for the Lorentz-metric of a static gravitational field, in: Proc. on Variational Problems (D. BERESTICKI - J. M. CORON - E. EKELAND, Eds.), Paris (1989), pp. 13-18. | MR 1205170 | Zbl 0719.58009

[3] V. Benci - D. FORTUNATO, Existence of geodesics for the Lorentz-metric of a stationary gravitational field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1) (1990). | Numdam | MR 1046082 | Zbl 0697.58011

[4] V. Benci - D. Fortunato, On the existence of infinitely many geodesic on space-time manifolds, to appear on Adv. Math. | MR 1275190 | Zbl 0808.58016

[5] V. Benci - D. FORTUNATO - F. GIANNONI, On the existence of multiple geodesics in static space-time, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 8 (1991), pp. 79-102. | Numdam | MR 1094653 | Zbl 0716.53057

[6] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Lomb. Sc.(A), 112 (1978), pp. 332-336. | Zbl 0436.58006

[7] C. Greco, Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field, Math. Ann., 287 (1990), pp. 515-521. | MR 1060690 | Zbl 0681.53033

[8] C. Greco, Periodic trajectories in static space-times, Proc. Royal Soc. Edinburgh, 113-A (1989), pp. 99-103. | MR 1025457 | Zbl 0691.53052

[9] C. Greco, Multiple periodic trajectories on stationary space-times, Ann. Mat. Pura Appl., (IV), 162 (1992), pp. 337-348. | MR 1199661 | Zbl 0777.53066

[10] A. Masiello, Timelike periodic trajectories in stationary Lorentz manifold, Nonlin. Anal. T.M.A., 19 (1992), pp. 531-545. | MR 1183661 | Zbl 0769.58007

[11] A. Masiello, On the existence of a closed geodesic on stationary Lorentz manifold, J. Diff. Eqs., 104 (1993), pp. 48-59. | MR 1224121 | Zbl 0808.53058

[12] A. Masiello - L. PISANI, Existence oftimelike trajectory for a time-dependent Lorentz metric, Ann. Univ. Ferrara, (VII), 36 (1990), pp. 207-222. | MR 1151493 | Zbl 0756.53030

[13] J. Mawhin - M. WILLEM, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York (1989). | MR 982267 | Zbl 0676.58017

[14] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, London (1983). | Zbl 0531.53051

[15] K. Uhlenbeck, A Morse theory for geodesics on a Lorentz manifold, Topology, 14 (1975), pp. 69-90. | MR 383461 | Zbl 0323.58010