Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type
Rendiconti del Seminario Matematico della Università di Padova, Volume 94 (1995), pp. 165-213.
@article{RSMUP_1995__94__165_0,
     author = {Manfrin, Renato},
     title = {Some results of {Gevrey} and analytic regularity for semilinear weakly hyperbolic equations of {Oleinik} type},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {165--213},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {94},
     year = {1995},
     mrnumber = {1370911},
     zbl = {0878.35076},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1995__94__165_0/}
}
TY  - JOUR
AU  - Manfrin, Renato
TI  - Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1995
SP  - 165
EP  - 213
VL  - 94
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1995__94__165_0/
LA  - en
ID  - RSMUP_1995__94__165_0
ER  - 
%0 Journal Article
%A Manfrin, Renato
%T Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1995
%P 165-213
%V 94
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1995__94__165_0/
%G en
%F RSMUP_1995__94__165_0
Manfrin, Renato. Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type. Rendiconti del Seminario Matematico della Università di Padova, Volume 94 (1995), pp. 165-213. http://archive.numdam.org/item/RSMUP_1995__94__165_0/

[A] R.A. Adams, Sobolev Spaces, Academic Press (1975). | MR | Zbl

[AM] S. Alinhac - G. Métivier, Propagation de l'analyticité des solutions de système hyperboliques nonlinéaires, Inv. Math., 75 (1984), pp. 189-203. | MR | Zbl

[AS] A. Arosio - S. Spagnolo, Global existence for abstract evolution equations of weakly hyperbolic type, J. Math. Pures Appl., 65 (1986), pp. 263-305. | MR | Zbl

[C] L. Cardosi, Evolution equations in scales of abstract Gevrey spaces, Boll. Un. Mat. Ital., 6 (1985), pp. 379-406. | MR | Zbl

[CDS] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scu. Norm. Sup. Pisa, 6 (1979), pp. 511-559. | Numdam | MR | Zbl

[CJS1] F. Colombini - E. Jannelli - S. Spagnolo, Non uniqueness in hyperbolic Cauchy problem, Ann. Math., 126 (1987), pp. 495-524. | MR | Zbl

[CJS2] F. Colombini - E. Jannelli - S. Spagnolo, Well posedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scu. Norm. Sup. Pisa, 10 (1983), pp. 291-312. | Numdam | MR | Zbl

[CS] F. Colombini - S. Spagnolo, An example of a weakly hyperbolic Cauchy problem not well posed in C∞, Acta Math., 148 (1982), pp. 243-253. | Zbl

[D] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. | MR | Zbl

[DM] P. D'Ancona - R. Manfrin, Local solvability for a class of semilinear weakly hyperbolic equations, to appear Ann. Mat. Pura Appl. | Zbl

[H] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), pp. 671-704. | MR | Zbl

[K] T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems, Arch. Rat. Mech. Anal., 58 (1975), pp. 181-205. | MR | Zbl

[J1] E. Jannelli, Analytic solutions of non linear hyperbolic systems, Boll. Un. Mat. Ital. (6), 5-B (1986), pp. 487-501. | MR | Zbl

[J2] E. Jannelli, Gevrey well posedness for a class of weakly hyperbolic equations, J. Math. Kyoto Univ., 24 (1984), pp. 763-778. | MR | Zbl

[LO] J. Leray - Y. Ohya, Systèmes nonlinéaires hyperboliques nonstrictes, Math. Ann., 70 (1967), pp. 167-205. | MR | Zbl

[M1] S. Mizohata, The Theory of Partial Differential Equations, University Press, Cambridge (1973). | MR | Zbl

[M2] S. Mizohata, On the Cauchy Problem, Academic Press (1985). | MR | Zbl

[M3] S. Mizohata, Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math., 14 (1961), pp. 547-559. | MR | Zbl

[N1] T. Nishitani, Energy inequality for nonstrictly hyperbolic operators in Gevrey classes, J. Math. Kyoto Univ., 24 (1983), pp. 739-773. | MR | Zbl

[N2] T. Nishitani, Sur les équations hyperboliques à coefficients qui sont holderiens en t et de classe de Gevrey en x, Bull. Sci. Math. 2e série, 107 (1983), pp. 113-138. | MR | Zbl

[N3] T. Nishitani, A necessary and sufficient condition for the hyperbolicity of second order equations with two indipendent variables, J. Math. Kyoto Univ., 24 (1984), pp. 91-104. | MR | Zbl

[O1] O.A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. | MR

[O2] O.A. Oleinik, Linear equations of second order with non negative characteristic form, Mat. Sb., 61 (1966), pp. 111-140 (English transl.: Transl. Am. Math. Soc. (2) 65, pp. 167-199). | MR

[OT] Y. Ohya - S. Tarama, Le problème de Cauchy a caractéristiques multiples dans la classe de Gevrey (coéfficients hölderiens en t), Proceedings of the Conference on Hyperbolic Equations and Related Topics, Kinokuniya, Tokyo, 1985. | Zbl

[S1] S. Spagnolo, Analytic regularity of the solutions of a semilinear weakly hyperbolic equation, Ric. Mat. Suppl., 36 (1987), pp. 193-202. | MR | Zbl

[S2] S. Spagnolo, Some results of analytic regularity for the semi-linear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1988, Hyperbolic Equations (1987), pp. 203-329. | MR | Zbl

[S3] S. Spagnolo, Analytic and Gevrey Well-Posedness of the Cauchy Problem for Second Order Weakly Hyperbolic Equations with Coefficients Irregular in Time, Taniguchi Symp. HERT, Katata (1984), pp. 363-380. | MR | Zbl