Stability estimates for a linearized Muskat problem
Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000), pp. 43-57.
@article{RSMUP_2000__104__43_0,
     author = {Magni, C.},
     title = {Stability estimates for a linearized {Muskat} problem},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {43--57},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {104},
     year = {2000},
     mrnumber = {1809348},
     zbl = {1017.35120},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2000__104__43_0/}
}
TY  - JOUR
AU  - Magni, C.
TI  - Stability estimates for a linearized Muskat problem
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2000
SP  - 43
EP  - 57
VL  - 104
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2000__104__43_0/
LA  - en
ID  - RSMUP_2000__104__43_0
ER  - 
%0 Journal Article
%A Magni, C.
%T Stability estimates for a linearized Muskat problem
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2000
%P 43-57
%V 104
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2000__104__43_0/
%G en
%F RSMUP_2000__104__43_0
Magni, C. Stability estimates for a linearized Muskat problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000), pp. 43-57. http://archive.numdam.org/item/RSMUP_2000__104__43_0/

[1] F. Abergel, Well-posedness for a Cauchy problem associated to time dependent free boundaries with nonlocal leading terms, Commun. in Partial Differential Equations, 21, n. 9-10 (1996), pp. 1307-1319. | MR | Zbl

[2] F. Abergel - J. Mossino, Characterization of the multidimensional Muskat problem and existence of smooth solutions, C. R. Acad. Sci. Paris, 319, serie I (1994), pp. 35-40. | MR | Zbl

[3] J.S. Aronofsky, Trans. Aime, 195, 15 (1952).

[4] L. Boukrim - J. Mossino, Isoperimetric inequalities for a generalized multidimensional Muskat problem, C. R. Acad. Sci. Paris, 317, serie I (1993), pp. 392-332. | MR

[5] J.R. Cannon - A. Fasano, A nonlinear parabolic free boundary problem, Ann. Mat. Pura Appl., 4, n. 112 (1997), pp. 119-149. | MR | Zbl

[6] L.C. Evans, A free boundary problem: the flow of two immiscible fluids in a one-dimensional porous medium, I, Indiana University Mathematics Journal, 26, n. 5 (1997). | MR | Zbl

[7] W. Fulk - R. B. GUENTHER, A free boundary problem and an extension of Muskat's model, Acta Math., 122 (1969), pp. 273-300. | MR | Zbl

[8] L. Jiang - Z. Chien, Weak formulation of a multidimensional Muskat problem, in Proceedings of the Irsee Conference on Free Boundary Problems, Free Boundary Problems: Theory and Applications, II, K. H. Hoffmann and J. Sprekels ed., Pitman Res. Notes Math. Ser., n. 186 (1990). | Zbl

[9] L. Jiang - J. Liang, The perturbarion of the interface of the two-dimensional diffraction problem and an approximating Muskat problem, J. Partial Differential Equations, 3, n. 2 (1990), pp. 85-96. | MR | Zbl

[10] C. Magni, On the Muskat problem, Ph. D. Thesis, 1997.

[11] M. Muskat, Physics, 5, 250 (1943).

[12] M. Muskat, The flow of homogeneous fluids through porous media, Mc-Graw-Hill, New York (1973). | JFM

[13] A.E. Scheidegger, On the stability of displacement fronts in porous media: a discussion of the Muskat-Aronofsky model, Canad. J. Phys., 38 (1960), pp. 153-162. | MR

[14] A.E. Scheidegger, General theory of dispersion in porous media, J. Geophys. Res., 66 (1961), pp. 3273-3278.

[15] N.N. Verigin, Izv. Akad. Nauk. SSSR., 5 (1962), pp. 674-687.