@article{RSMUP_2010__124__231_0, author = {Lukyanenko, Vladimir O. and Skiba, Alexander N.}, title = {Finite groups in which $\tau $-quasinormality is a transitive relation}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {231--246}, publisher = {Seminario Matematico of the University of Padua}, volume = {124}, year = {2010}, mrnumber = {2752688}, zbl = {1217.20012}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2010__124__231_0/} }
TY - JOUR AU - Lukyanenko, Vladimir O. AU - Skiba, Alexander N. TI - Finite groups in which $\tau $-quasinormality is a transitive relation JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 231 EP - 246 VL - 124 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2010__124__231_0/ LA - en ID - RSMUP_2010__124__231_0 ER -
%0 Journal Article %A Lukyanenko, Vladimir O. %A Skiba, Alexander N. %T Finite groups in which $\tau $-quasinormality is a transitive relation %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 231-246 %V 124 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2010__124__231_0/ %G en %F RSMUP_2010__124__231_0
Lukyanenko, Vladimir O.; Skiba, Alexander N. Finite groups in which $\tau $-quasinormality is a transitive relation. Rendiconti del Seminario Matematico della Università di Padova, Volume 124 (2010), pp. 231-246. http://archive.numdam.org/item/RSMUP_2010__124__231_0/
[1] Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1) (1975), pp. 77--83. | MR | Zbl
,[2] On maximal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 26 (1998), pp. 3647--3652. | MR | Zbl
,[3] On the solvability of finite groups, Arch. Math., 51 (1988), pp. 289--293. | MR | Zbl
,[4] The influence of minimal subgroups on the structure of finite groups, Arch. Math., 72 (1999), pp. 401--404. | MR | Zbl
- ,[5] Influence of -quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), pp. 521--527. | MR | Zbl
- - ,[6] Sylow permutable subnormal subgroups of finite groups, J. Algebra, 251 (2002), pp. 727--738. | MR | Zbl
- ,[7] Sylow permutable subnormal subgroups of finite groups, II, Bull. Austral. Math. Soc., 64 (2001), pp. 479--486. | MR | Zbl
- ,[8] Classes of Finite Groups, Springer, Dordrecht, 2006. | MR | Zbl
- ,[9] On minimal subgroups of finite groups, Acta Math. Hungar., 73 (1996), pp. 335--342. | MR | Zbl
- ,[10] Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), pp. 400--412. | MR | Zbl
- - ,[11] Solvable -groups, strong Sylow bases and mutually permutable products, J. Algebra, 321 (7) (2009), pp. 2022--2027. | MR | Zbl
- - ,[12] The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), pp. 244--256. | MR | Zbl
- ,[13] Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), pp. 15--17. | MR | Zbl
,[14] Minimal nicht uberauflosbare, endlicher Gruppen, Math. Z., 91 (1966), pp. 198--205. | MR | Zbl
,[15] Finite Soluble Groups, Walter de Gruyter, Berlin - New York, 1992. | MR | Zbl
- ,[16] Topics in Finite Groups, Cambridge University Press, 1976. | MR | Zbl
,[17] Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87--92. | MR | Zbl
,[18] Finite Groups, Harper & Row Publishers, New York - Evanston - London, 1968. | MR | Zbl
,[19] Endliche Gruppen I, Springer, Berlin - Heidelberg - New York, 1967. | MR | Zbl
,[20] Normalteiler and maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), pp. 409--434. | MR | Zbl
,[21] Finite Groups III, Springer - Verlag, Berlin - New York, 1982. | MR | Zbl
- ,[22] Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), pp. 205--221. | MR | Zbl
,[23] On -semipermutable and -normal subgroups of finite groups, Arabian J. Sci. Engineering, 34(2A) (2009), pp. 167--175.
,[24] Finite groups in which ()-semipermutability is a transitive relation, Internat. J. Algebra, 2(3) (2008), pp. 143--152. | MR | Zbl
- - ,[25] The influence of -quasinormality of some subgroups of a finite group, Arch. Math., 81 (2003), pp. 245--252. | MR | Zbl
- - ,[26] The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc., 131 (2002), pp. 337--341. | MR | Zbl
- ,[27] On -quasinormal and weakly -quasinormal subgroups of finite groups, Math. Sci. Res. J., 12(10) (2008), pp. 243--257. | MR | Zbl
- ,[28] On weakly -quasinormal subgroups of finite groups, Acta Math. Hungar., 125 (3) (2009), pp. 237--248. | MR
- ,[29] Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar., 59 (1992), pp. 107--110. | MR | Zbl
,[30] A note of finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), pp. 933--937. | MR | Zbl
,[31] Subgroups permutable with all Sylow subgroups, J. Algebra, 182 (1998), pp. 285--293. | MR | Zbl
,[32] A criterion for the -solubility of finite groups, Mat. Zam., 9 (1971), pp. 375--383 (Russian, English translation in Math. Notes, 9 (1971), pp. 216--220). | MR | Zbl
,[33] The influence of -permutability of some subgroups, Acta Math. Hungar., 56 (1990), pp. 287--293. | MR | Zbl
,[34] Formations of Finite Groups, Nauka, Moscow, 1978. | MR | Zbl
,[35] Formations of Algebraic Systems, Nauka, Moscow, 1989. | MR | Zbl
- ,[36] A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, (2010), DOI: 10.1016/j.jpaa.2010.04.017.
,[37] Two sufficient conditions for supersolubility of finite groups, Israel J. Math., 3 (35) (1980), pp. 210--214. | MR | Zbl
,[38] On -semipermutable maximal and minimal subgroups of Sylow -subgroups of finite groups, Comm. Algebra, 34 (2006), pp. 143--149. | MR | Zbl
- ,[39] I gruppi risolubili finiti in cui i sottogrupi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 37 (8) (1964), pp. 150--154. | MR | Zbl
,