@article{RSMUP_2010__124__43_0, author = {Paolini, E. and Ulivi, L.}, title = {The {Steiner} problem for infinitely many points}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {43--56}, publisher = {Seminario Matematico of the University of Padua}, volume = {124}, year = {2010}, mrnumber = {2752675}, zbl = {1217.49038}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2010__124__43_0/} }
TY - JOUR AU - Paolini, E. AU - Ulivi, L. TI - The Steiner problem for infinitely many points JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 43 EP - 56 VL - 124 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2010__124__43_0/ LA - en ID - RSMUP_2010__124__43_0 ER -
%0 Journal Article %A Paolini, E. %A Ulivi, L. %T The Steiner problem for infinitely many points %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 43-56 %V 124 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2010__124__43_0/ %G en %F RSMUP_2010__124__43_0
Paolini, E.; Ulivi, L. The Steiner problem for infinitely many points. Rendiconti del Seminario Matematico della Università di Padova, Volume 124 (2010), pp. 43-56. http://archive.numdam.org/item/RSMUP_2010__124__43_0/
[1] Selected Topics on "Analysis in Metric Spaces", Quaderni della Scuola Normale Superiore, Pisa, 2000. | MR | Zbl
- ,[2] Steiner's invariant and minimal connections, Portugal. Math. (N.S.), 65 (2) (2008), pp. 237--242. | MR | Zbl
- ,[3] Optimal transportation problems with free Dirichlet regions, Progress in Nonlinear Diff. Equations and their Applications, 51 (2002), pp. 41--65. | MR | Zbl
- - ,[4] Minimal networks: the Steiner problem and its generalizations, CRC Press, 1994. | MR | Zbl
- ,[5] On one-dimensional continua uniformly approximating planar sets, Calc. Var. Partial Differential Equations, 27 (3) (2006), pp. 287--309. | MR | Zbl
- - ,[6] Existence and regularity for the Steiner problem, http://cvgmt.sns.it/papers/paoste09 (preprint).
- ,[7] Solution of the Plateau problem for -dimensional surfaces of varying topological type, Acta Math., 104 (1960), pp. 1--92. | MR | Zbl
,