Root separation for reducible monic quartics
Rendiconti del Seminario Matematico della Università di Padova, Volume 126 (2011), pp. 63-72.
@article{RSMUP_2011__126__63_0,
     author = {Dujella, Andrej and Pejkovi\'c, Tomislav},
     title = {Root separation for reducible monic quartics},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {63--72},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {126},
     year = {2011},
     zbl = {1258.11052},
     mrnumber = {2918199},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2011__126__63_0/}
}
TY  - JOUR
AU  - Dujella, Andrej
AU  - Pejković, Tomislav
TI  - Root separation for reducible monic quartics
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2011
DA  - 2011///
SP  - 63
EP  - 72
VL  - 126
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2011__126__63_0/
UR  - https://zbmath.org/?q=an%3A1258.11052
UR  - https://www.ams.org/mathscinet-getitem?mr=2918199
LA  - en
ID  - RSMUP_2011__126__63_0
ER  - 
%0 Journal Article
%A Dujella, Andrej
%A Pejković, Tomislav
%T Root separation for reducible monic quartics
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2011
%P 63-72
%V 126
%I Seminario Matematico of the University of Padua
%G en
%F RSMUP_2011__126__63_0
Dujella, Andrej; Pejković, Tomislav. Root separation for reducible monic quartics. Rendiconti del Seminario Matematico della Università di Padova, Volume 126 (2011), pp. 63-72. http://archive.numdam.org/item/RSMUP_2011__126__63_0/

[1] Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathematics, Cambridge, 2004. | MR | Zbl

[2] Y. Bugeaud - A. Dujella, Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc., to appear.

[3] Y. Bugeaud - M. Mignotte, Polynomial root separation, Intern. J. Number Theory, 6 (2010), pp. 587-602. | MR | Zbl

[4] J.-H. Evertse, Distances between the conjugates of an algebraic number, Publ. Math. Debrecen, 65 (2004), pp. 323-340. | MR | Zbl

[5] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J., 11 (1964), pp. 257-262. | MR | Zbl

[6] A. Schönhage, Polynomial root separation examples, J. Symbolic Comput., 41 (2006), pp. 1080-1090. | MR | Zbl

[7] U. Zannier, On the Hilbert irreducibility theorem, Rend. Semin. Mat. Univ. Politec. Torino, 67, no. 1 (2009), pp. 1-14. | MR | Zbl