Localizations of tensor products
Rendiconti del Seminario Matematico della Università di Padova, Volume 131 (2014), pp. 237-258.
@article{RSMUP_2014__131__237_0,
     author = {Dugas, Manfred and Aceves, Kelly and Wagner, Bradley},
     title = {Localizations of tensor products},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {237--258},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {131},
     year = {2014},
     mrnumber = {3217760},
     zbl = {1304.20067},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2014__131__237_0/}
}
TY  - JOUR
AU  - Dugas, Manfred
AU  - Aceves, Kelly
AU  - Wagner, Bradley
TI  - Localizations of tensor products
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2014
SP  - 237
EP  - 258
VL  - 131
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2014__131__237_0/
LA  - en
ID  - RSMUP_2014__131__237_0
ER  - 
%0 Journal Article
%A Dugas, Manfred
%A Aceves, Kelly
%A Wagner, Bradley
%T Localizations of tensor products
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2014
%P 237-258
%V 131
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2014__131__237_0/
%G en
%F RSMUP_2014__131__237_0
Dugas, Manfred; Aceves, Kelly; Wagner, Bradley. Localizations of tensor products. Rendiconti del Seminario Matematico della Università di Padova, Volume 131 (2014), pp. 237-258. http://archive.numdam.org/item/RSMUP_2014__131__237_0/

[1] D. Arnold - B. O’Brian - J.D. Reid, Quasipure injective and projective torsion-free abelian groups of finite rank. Proc. London Math. Soc. (3) 38 (1979), pp. 532–544. | MR | Zbl

[2] S. Breaz - G. Călugăreanu, Self-c-injective abelian groups. Rend. Sem. Mat. Univ. Padova 116 (2006), pp. 193–203. | Numdam | MR | Zbl

[3] S. Breaz - P. Schultz, Dualities for self small groups. Proc. Amer. Math. Soc. 140 (2011), no. 1, pp. 69–82. | MR | Zbl

[4] M. Brešar - M. Grašič - J.S. Ortega, Zero product determined matrix algebras. Lin. Alg. Appl. 430 (2009), pp. 1486–1498. | MR | Zbl

[5] M. Dugas - S. Feigelstock, Self-free modules and E-rings. Comm. Algebra 31 (2003), no. 3, pp. 1387–1402. | MR | Zbl

[6] M. Dugas, Localizations of torsion-free abelian groups. J. Algebra 278 (2004), pp. 411–429. | MR | Zbl

[7] M. Dugas, Localizations of torsion-free abelian groups II. J. Algebra 284 (2005), no. 2, pp. 811–823. | MR | Zbl

[8] A.A. Fomin, Tensor products of torsion-free abelian groups, Siberian Math. J. 16 (1975), no. 5, pp. 820–827. | MR | Zbl

[9] R. Göbel - B. Goldsmith - O. Kolman, On modules which are self slender. Houston J. Math. 35 (2009), no. 3, pp. 725–736. | MR | Zbl

[10] R. Göbel - D. Herden - S. Shelah, Absolute E-rings. Adv. Math. 226 (2011), no.1, pp. 235–253. | MR | Zbl

[11] R. Göbel - J. Trlifaj, Approximations and endomorphism algebras of modules. Second extended edition. de Gruyter Expositions in Mathematics, 41. Walter de Gruyter GmbH & Co. KG, Berlin, 2012. | MR | Zbl

[12] T.A. Hungerford, Algebra, Graduate Texts in Mathematics, Springer-Verlag New York Inc. 1974. | Zbl

[13] R.E. Johnson - E.T. Wong, Quasi-injective modules and irreducible rings. J. London Math. Soc. 36 (1961), pp. 260–268. | MR | Zbl