@article{RSMUP_2015__133__241_0, author = {Alahmadi, Adel and Facchini, Alberto and Khanh Tung, Nguyen}, title = {Automorphism-invariant modules}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {241--260}, publisher = {Seminario Matematico of the University of Padua}, volume = {133}, year = {2015}, mrnumber = {3354953}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2015__133__241_0/} }
TY - JOUR AU - Alahmadi, Adel AU - Facchini, Alberto AU - Khanh Tung, Nguyen TI - Automorphism-invariant modules JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 241 EP - 260 VL - 133 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2015__133__241_0/ LA - en ID - RSMUP_2015__133__241_0 ER -
%0 Journal Article %A Alahmadi, Adel %A Facchini, Alberto %A Khanh Tung, Nguyen %T Automorphism-invariant modules %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 241-260 %V 133 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2015__133__241_0/ %G en %F RSMUP_2015__133__241_0
Alahmadi, Adel; Facchini, Alberto; Khanh Tung, Nguyen. Automorphism-invariant modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 241-260. http://archive.numdam.org/item/RSMUP_2015__133__241_0/
[1]Rings and Categories of Modules, Second Edition, GTM 13, Springer-Verlag, 1992. | MR | Zbl
– ,[2]On the ring of quotients of a boolean ring, Canad. Math. Bull., 2 (1959), pp. 25–29. | MR | Zbl
– ,[3]Modules which are isomorphic to submodules of each other, Arch. Math., 16 (1965), pp. 184–185. | MR | Zbl
,[4]On semilocal rings, Israel J. Math., 81 (1993), pp. 203–211. | MR | Zbl
– ,[5]A note on pseudo-injective modules, Comm. Algebra, 33 (2005), pp. 361–369. | MR | Zbl
,[6]Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), pp. 223–229. | MR | Zbl
– – ,[7]Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Math. 167, Birkhäuser Verlag, 1998. Reprinted in Modern Birkhäuser Classics, Birkhäuser Verlag, 2010. | MR | Zbl
,[8]Local morphisms and modules with a semilocal endomorphism ring, Algebr. Represent. Theory, 9 (2006), pp. 403–422. | MR | Zbl
– ,[9]Krieger, Malabar, 1991. | MR | Zbl
, ,[10]Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 117–121. | MR | Zbl
– ,[11]Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), pp. 101–106. | MR | Zbl
– ,[12]Right self-injective rings in which every element is a sum of two units, J. Algebra Appl., 6 (2007), pp. 281–286. | MR | Zbl
– ,[13]Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12 (2013), 1250159, 9 pp. | MR | Zbl
– ,[14]The endomorphism ring of a square-free injective module, Acta Math. Vietnamica 39(3) (2014), Online DOI 10.1007/s40306-014-0075-y. | MR
,[15]Continuous and Discrete Modules, London Mathematical Society, Lecture Notes Series 147, Cambridge University Press, 1990. | MR | Zbl
– ,[16]Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269–278. | MR | Zbl
,[17]Rings of invariant module type and automorphism-invariant modules, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 299–311. | MR | Zbl
– ,[18]Rings of quotients, Springer-Verlag, 1975. | MR | Zbl
,[19]2-good rings, Quart. J. Math., 56 (2005), pp. 417–430. | MR | Zbl
,