Automorphism-invariant modules
Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 241-260.
@article{RSMUP_2015__133__241_0,
     author = {Alahmadi, Adel and Facchini, Alberto and Khanh Tung, Nguyen},
     title = {Automorphism-invariant modules},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {241--260},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {133},
     year = {2015},
     mrnumber = {3354953},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2015__133__241_0/}
}
TY  - JOUR
AU  - Alahmadi, Adel
AU  - Facchini, Alberto
AU  - Khanh Tung, Nguyen
TI  - Automorphism-invariant modules
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2015
SP  - 241
EP  - 260
VL  - 133
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2015__133__241_0/
LA  - en
ID  - RSMUP_2015__133__241_0
ER  - 
%0 Journal Article
%A Alahmadi, Adel
%A Facchini, Alberto
%A Khanh Tung, Nguyen
%T Automorphism-invariant modules
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2015
%P 241-260
%V 133
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2015__133__241_0/
%G en
%F RSMUP_2015__133__241_0
Alahmadi, Adel; Facchini, Alberto; Khanh Tung, Nguyen. Automorphism-invariant modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 241-260. http://archive.numdam.org/item/RSMUP_2015__133__241_0/

[1]D. W. AndersonK. R. Fuller, Rings and Categories of Modules, Second Edition, GTM 13, Springer-Verlag, 1992. | MR | Zbl

[2]B. BrainerdJ. Lambek, On the ring of quotients of a boolean ring, Canad. Math. Bull., 2 (1959), pp. 25–29. | MR | Zbl

[3]T. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. Math., 16 (1965), pp. 184–185. | MR | Zbl

[4]R. CampsW. Dicks, On semilocal rings, Israel J. Math., 81 (1993), pp. 203–211. | MR | Zbl

[5]H. Q. Dinh, A note on pseudo-injective modules, Comm. Algebra, 33 (2005), pp. 361–369. | MR | Zbl

[6]N. ErS. SinghA. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), pp. 223–229. | MR | Zbl

[7]A. Facchini, Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Math. 167, Birkhäuser Verlag, 1998. Reprinted in Modern Birkhäuser Classics, Birkhäuser Verlag, 2010. | MR | Zbl

[8]A. FacchiniD. Herbera, Local morphisms and modules with a semilocal endomorphism ring, Algebr. Represent. Theory, 9 (2006), pp. 403–422. | MR | Zbl

[9]K. R. Goodearl, Von Neumann Regular Rings, Krieger, Malabar, 1991. | MR | Zbl

[10]P. A. Guil AsensioA. K. Srivastava, Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 117–121. | MR | Zbl

[11]P. A. Guil AsensioA. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), pp. 101–106. | MR | Zbl

[12]D. KhuranaA. K. Srivastava, Right self-injective rings in which every element is a sum of two units, J. Algebra Appl., 6 (2007), pp. 281–286. | MR | Zbl

[13]T.-K. LeeY. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12 (2013), 1250159, 9 pp. | MR | Zbl

[14]Mai Hoang Bien, The endomorphism ring of a square-free injective module, Acta Math. Vietnamica 39(3) (2014), Online DOI 10.1007/s40306-014-0075-y. | MR

[15]S. H. MohamedB. J. Müller, Continuous and Discrete Modules, London Mathematical Society, Lecture Notes Series 147, Cambridge University Press, 1990. | MR | Zbl

[16]W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269–278. | MR | Zbl

[17]S. SinghA. K. Srivastava, Rings of invariant module type and automorphism-invariant modules, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 299–311. | MR | Zbl

[18]B. Stenström, Rings of quotients, Springer-Verlag, 1975. | MR | Zbl

[19]P. Vámos, 2-good rings, Quart. J. Math., 56 (2005), pp. 417–430. | MR | Zbl