@article{RSMUP_2015__134__93_0, author = {Ziegler, Paul}, title = {Mordell-Lang in positive characteristic}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {93--132}, publisher = {Seminario Matematico of the University of Padua}, volume = {134}, year = {2015}, mrnumber = {3428416}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2015__134__93_0/} }
TY - JOUR AU - Ziegler, Paul TI - Mordell-Lang in positive characteristic JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 93 EP - 132 VL - 134 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2015__134__93_0/ LA - en ID - RSMUP_2015__134__93_0 ER -
%0 Journal Article %A Ziegler, Paul %T Mordell-Lang in positive characteristic %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 93-132 %V 134 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2015__134__93_0/ %G en %F RSMUP_2015__134__93_0
Ziegler, Paul. Mordell-Lang in positive characteristic. Rendiconti del Seminario Matematico della Università di Padova, Volume 134 (2015), pp. 93-132. http://archive.numdam.org/item/RSMUP_2015__134__93_0/
[1] Schémas en groupes. I: Propriétés générales des schémas en groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151. Springer-Verlag, Berlin, 1970. | Zbl
[2] Toward a proof of the Mordell-Lang conjecture in characteristic p. Internat. Math. Res. Notices, (5):103–115, 1992. | MR | Zbl
and .[3] Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. | MR | Zbl
and .[4] Vanishing cycles for formal schemes. II. Invent. Math., 125(2):367–390, 1996. | MR | Zbl
.[5] Topologie générale. Chapitres 1 à 4. Hermann, Paris, 1971. | MR
.[6] Commutative algebra. Chapters 1–7. Springer-Verlag, Berlin, 1989. | MR | Zbl
.[7] Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble), 49(2):473–541, 1999. | Numdam | MR | Zbl
.[8] Chow’s K/k-image and K/k-trace, and the Lang-Néron theorem. Enseign. Math. (2), 52(1-2):37–108, 2006. | MR | Zbl
.[9] Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math., (82):5–96 (1996), 1995. | Numdam | MR | Zbl
.[10] Lectures on p-divisible groups. Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin, 1972. | MR | Zbl
.[11] Schémas en groupes II (SGA 3), Lecture Notes in Mathematics, Vol. 152. Springer-Verlag, 1970. | Zbl
and (ed.).[12] Commutative algebra. Springer-Verlag, New York, 1995. | MR | Zbl
.[13] Degeneration of abelian varieties. Springer-Verlag, Berlin, 1990. | MR | Zbl
and .[14] Division points on subvarieties of isotrivial semiabelian varieties. Int. Math. Res. Not., pages Art. ID 65437, 23, 2006. | MR | Zbl
and .[15] Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., (4):228, 1960. | Numdam | Zbl
.[16] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., (24):231, 1965. | EuDML | Numdam | MR | Zbl
.[17] Formal groups and applications, volume 78 of Pure and Applied Mathematics. Academic Press Inc., New York, 1978. | MR | Zbl
.[18] The Mordell-Lang conjecture for function fields. J. Amer. Math. Soc., 9(3):667–690, 1996. | MR | Zbl
.[19] Uniformly rigid spaces. Algebra Number Theory, 6(2):341–388, 2012. | MR | Zbl
.[20] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Mathematics, Vol. 264. Springer-Verlag, Berlin, 1972. | MR | Zbl
.[21] Subvarieties of moduli spaces. Invent. Math., 24:95–119, 1974. | EuDML | MR | Zbl
.[22] Families of p-divisible groups with constant Newton polygon. Doc. Math., 7:183–201 (electronic), 2002. | EuDML | MR | Zbl
and .[23] On c-invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture. J. Algebraic Geom., 13(4):771–798, 2004. | MR | Zbl
and .[24] On the Manin-Mumford and Mordell-Lang conjectures in positive characteristic. Algebra Number Theory, 7(8):2039–2057, 2013. | MR | Zbl
.[25] A positive characteristic Manin-Mumford theorem. Compos. Math., 141(6):1351–1364, 2005. | MR | Zbl
.[26] The Stacks Project Authors. stacks project. http://stacks.math.columbia.edu, 2013.
[27] An introduction to homological algebra. Cambridge University Press, Cambridge, 1994. | MR | Zbl
.