Complemented subspaces of L p which embed into p 2
Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exposé no. 18, 12 p.
@article{SAF_1979-1980____A15_0,
     author = {Johnson, W. B.},
     title = {Complemented subspaces of $L_p$ which embed into $\ell _p \otimes \ell _2$},
     journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")},
     note = {talk:18},
     pages = {1--12},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1979-1980},
     language = {en},
     url = {http://archive.numdam.org/item/SAF_1979-1980____A15_0/}
}
TY  - JOUR
AU  - Johnson, W. B.
TI  - Complemented subspaces of $L_p$ which embed into $\ell _p \otimes \ell _2$
JO  - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")
N1  - talk:18
PY  - 1979-1980
SP  - 1
EP  - 12
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://archive.numdam.org/item/SAF_1979-1980____A15_0/
LA  - en
ID  - SAF_1979-1980____A15_0
ER  - 
%0 Journal Article
%A Johnson, W. B.
%T Complemented subspaces of $L_p$ which embed into $\ell _p \otimes \ell _2$
%J Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")
%Z talk:18
%D 1979-1980
%P 1-12
%I Ecole Polytechnique, Centre de Mathématiques
%U http://archive.numdam.org/item/SAF_1979-1980____A15_0/
%G en
%F SAF_1979-1980____A15_0
Johnson, W. B. Complemented subspaces of $L_p$ which embed into $\ell _p \otimes \ell _2$. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exposé no. 18, 12 p. http://archive.numdam.org/item/SAF_1979-1980____A15_0/

[1] J. Bourgain, H.P. Rosenthal, and G. Schechtman, An ordinal LP-index for Banach spaces, with application to complemented subspaces of Lp, | Zbl

[2] W.B. Johnson, Operators into Lp which factor through lp, J. London Math. Soc. (2), 14 (1976), 333-339. | MR | Zbl

[3] W.B. Johnson and L. Jones, Every Lp operator is an L 2 operator, Proc. A.M.S. 72 (1978), 309-312. | MR | Zbl

[4] W.B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Memoirs A.M.S. No. 217 (1979). | MR | Zbl

[5] W.B. Johnson and E.W. Odell, Subspaces and quotients of lp⊕l 2 and Xp, | Zbl

[6] W.B. Johnson and M. Zippin, On subspaces and quotients of (Σ G n)lp and (Σ Gn)co, Israel J. Math. 13 (1972), 311-316. | Zbl

[7] M.I. Kadec and A. Pelczynski, Bases, lacunary sequences, and complemented subspaces in the spaces Lp, Studia Math 21 (1962), 161-176. | MR | Zbl

[8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, sequence spaces, Springer-Verlag (1977). | MR | Zbl

[9] B. Maurey, Théorèms de factorisation pour les opérateurs linéaires a valeurs dans les espaces Lp, Asterisque No. 11, Soc. Math. de France, Paris (1974). | Numdam | MR | Zbl

[10] A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. | MR | Zbl

[11] H.P. Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. | MR | Zbl

[12] G. Schechtman, Examples of Lp spaces, Israel J. Math. 22 (1975), 138-147. | MR | Zbl

[13] G. Schechtman, A remark on unconditional basic sequences in L p (1 < p < ∞), Israel J. Math. 19 (1974), 220-224. | Zbl