@incollection{SB_2001-2002__44__103_0, author = {Procesi, Claudio}, title = {On the $n!$-conjecture}, booktitle = {S\'eminaire Bourbaki : volume 2001/2002, expos\'es 894-908}, series = {Ast\'erisque}, note = {talk:898}, pages = {103--115}, publisher = {Soci\'et\'e math\'ematique de France}, number = {290}, year = {2003}, mrnumber = {2074052}, zbl = {1083.14006}, language = {en}, url = {http://archive.numdam.org/item/SB_2001-2002__44__103_0/} }
TY - CHAP AU - Procesi, Claudio TI - On the $n!$-conjecture BT - Séminaire Bourbaki : volume 2001/2002, exposés 894-908 AU - Collectif T3 - Astérisque N1 - talk:898 PY - 2003 SP - 103 EP - 115 IS - 290 PB - Société mathématique de France UR - http://archive.numdam.org/item/SB_2001-2002__44__103_0/ LA - en ID - SB_2001-2002__44__103_0 ER -
%0 Book Section %A Procesi, Claudio %T On the $n!$-conjecture %B Séminaire Bourbaki : volume 2001/2002, exposés 894-908 %A Collectif %S Astérisque %Z talk:898 %D 2003 %P 103-115 %N 290 %I Société mathématique de France %U http://archive.numdam.org/item/SB_2001-2002__44__103_0/ %G en %F SB_2001-2002__44__103_0
Procesi, Claudio. On the $n!$-conjecture, dans Séminaire Bourbaki : volume 2001/2002, exposés 894-908, Astérisque, no. 290 (2003), Exposé no. 898, 13 p. http://archive.numdam.org/item/SB_2001-2002__44__103_0/
[AB] A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), p. 245-250. | MR | Zbl
& -[BKR] Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, Electronic preprint, arXiv:math.AG/9908027, 1999.
, & -[Ch] Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), p. 39-90. | MR | Zbl
-[F] Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), p. 511-521. | MR | Zbl
-[GH] A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, p. 3607-3610. | MR | Zbl
& -[GH1] _, A remarkable q - t-Catalan sequence and q-Lagrange inversion, J. Algebraic Comb. 5 (1996), no. 3, p. 191-244. | MR | Zbl
[GP] On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math. 94 (1992), no. 1, p. 82-138. | MR | Zbl
& -[H] Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 5 (1994), no. 1, p. 17-76. | MR | Zbl
-[H1] _, MacDonald polynomials and geometry, in New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion & Stanley, eds.), vol. 38, M.S.R.I. Publications, 1999, p. 207-254. | MR
[H2] _, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the A.M.S. (to appear), 2001. | MR | Zbl
[H3] _, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preprint, 2001.
[IN] McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, p. 135-138. | MR | Zbl
& -[M] A new class of symmetric functions, in Actes du 20ème séminaire lotharingien, vol. 372/S-20, Publ. I.R.M.A. Strasbourg, 1988, p. 131-171. | Zbl
-[M1] _, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995. | MR | Zbl
[N] Lectures on Hilbert schemes of points on surfaces, American Math. Society, Providence RI, 1999. | MR | Zbl
-