Progrès récents sur l'hypothèse du continu
[Recent progress about the continuum hypothesis]
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 915, pp. 147-172.

Woodin's recent work has considerably renewed set theory by restoring its unity and making the domain more globally intelligible. For the first time, his results open a realistic perspective to solve the Continuum Problem, and, at the very least, they show that the latter is an unquestionably meaningful and precise question.

Les travaux récents de Woodin ont considérablement renouvelé la théorie des ensembles en lui apportant une intelligibilité globale et en restaurant son unité. Pour la première fois, ses résultats ouvrent une perspective réaliste de résoudre le problème du continu, et, à tout le moins, ils établissent le caractère irréfutablement signifiant et précis de celui-ci.

Classification: 03Exx
Keywords: set theory, continuum hypothesis, forcing, large cardinal axiom
@incollection{SB_2002-2003__45__147_0,
     author = {Dehornoy, Patrick},
     title = {Progr\`es r\'ecents sur l'hypoth\`ese du continu},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:915},
     pages = {147--172},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     zbl = {1057.03042},
     mrnumber = {2111643},
     language = {fr},
     url = {http://archive.numdam.org/item/SB_2002-2003__45__147_0/}
}
TY  - CHAP
AU  - Dehornoy, Patrick
TI  - Progrès récents sur l'hypothèse du continu
BT  - Séminaire Bourbaki : volume 2002/2003, exposés 909-923
AU  - Collectif
T3  - Astérisque
N1  - talk:915
PY  - 2004
DA  - 2004///
SP  - 147
EP  - 172
IS  - 294
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://archive.numdam.org/item/SB_2002-2003__45__147_0/
UR  - https://zbmath.org/?q=an%3A1057.03042
UR  - https://www.ams.org/mathscinet-getitem?mr=2111643
LA  - fr
ID  - SB_2002-2003__45__147_0
ER  - 
%0 Book Section
%A Dehornoy, Patrick
%T Progrès récents sur l'hypothèse du continu
%B Séminaire Bourbaki : volume 2002/2003, exposés 909-923
%A Collectif
%S Astérisque
%Z talk:915
%D 2004
%P 147-172
%N 294
%I Association des amis de Nicolas Bourbaki, Société mathématique de France
%C Paris
%G fr
%F SB_2002-2003__45__147_0
Dehornoy, Patrick. Progrès récents sur l'hypothèse du continu, in Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 915, pp. 147-172. http://archive.numdam.org/item/SB_2002-2003__45__147_0/

[1] J. Bagaria - “Bounded forcing axioms as principles of generic absoluteness”, Arch. Math. Logic 69 (2000), no. 6, p. 393-401. | MR | Zbl

[2] P. Dehornoy - “La détermination projective d'après Martin, Steel et Woodin”, in Sém. Bourbaki (1988/89), Astérisque, vol. 177-178, Société Mathématique de France, 1989, exp. no 710, p. 261-276. | Numdam | MR | Zbl

[3] M. Feng, M. Magidor & H. Woodin - “Universally Baire sets of reals”, in Set Theory of the Continuum (H. Judah, W. Just & H. Woodin, éds.), MSRI Publ., vol. 26, Springer, 1992, p. 203-242. | MR | Zbl

[4] M. Foreman - “Generic large cardinals : new axioms for mathematics ?”, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). | MR | Zbl

[5] M. Foreman, M. Magidor & S. Shelah - “Martin's maximum, saturated ideals, and nonregular ultrafilters”, Ann. of Math. 127 (1988), no. 1, p. 1-47. | MR | Zbl

[6] H. Friedman - “On the necessary use of abstract set theory”, Adv. in Math. 41 (1981), p. 209-280. | MR | Zbl

[7] K. Gödel - “What is Cantor's Continuum Problem ?”, Amer. Math. Monthly 54 (1947), p. 515-545. | MR | Zbl

[8] M. Goldstern & S. Shelah - “The bounded proper forcing axiom”, J. Symbolic Logic 60 (1995), no. 1, p. 58-73. | MR | Zbl

[9] A. Kanamori - The higher infinite, Springer, Berlin, 1994. | MR | Zbl

[10] Yu. Manin - “Georg Cantor and his heritage”, arXiv:math.AG/0209244, 2002. | MR | Zbl

[11] Y. Matijasevich & J. Robinson - “Reduction of an arbitrary Diophantine equation in one in 13 unknowns”, Acta Arith. 27 (1975), p. 521-553. | MR | Zbl

[12] W. Mitchell & J. Steel - Fine structure and iteration trees, Springer, Berlin, 1994. | MR | Zbl

[13] Y. Moschovakis - Descriptive set theory, North-Holland, Amsterdam, 1980. | MR | Zbl

[14] S. Shelah - Proper and improper forcing, 2e 'ed., Perspectives in Math. Logic, Springer, Berlin, 1998. | MR | Zbl

[15] S. Todorcevic - “Generic absoluteness and the continuum”, Math. Res. Lett. 9 (2002), p. 465-471. | MR | Zbl

[16] W. H. Woodin - The Axiom of Determinacy, forcing axioms, and the nonstationary ideal, Walter de Gruyter and co., Berlin, 1999. | MR | Zbl

[17] -, “The Continuum Hypothesis, I and II”, Notices Amer. Math. Soc. 48 (2001), no. 6, p. 567-576, & 8 (2001), no. 7, p. 681-690. | MR | Zbl

[18] -, The Continuum Hypothesis and the Ø-Conjecture, Coxeter Lectures, Fields Institute, Toronto, novembre 2002, Notes disponibles à l'adresse http://av.fields.utoronto.ca/slides/02-03/coxeter_lectures/woodin/.

[19] -, “The Continuum Hypothesis”, in Proceedings Logic Colloquium 2000, Paris, à paraître.