Géométrie conforme en dimension 4 : ce que l’analyse nous apprend  [ Conformal 4-dimensional geometry: What analysis has to teach us ]
Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Talk no. 950, p. 415-468

Starting at a 4-dimensional generalization of Polyakov’s formula for regularized determinants, we present the ideas, tools, and results which led Chang S.-Y. A., M. Gursky and Yang P. to a sharp L 2 conformal sphere theorem. This includes the solution of Yamabe type problems for quadratic polynomials in the Ricci curvature. On our way we introduce “Conformal Pairs”, in particular the (4th order) Paneitz operator and its associated Q-curvature, and discuss how they relate to more classical 4-dimensional conformal geometry. Elaborating on an argument due to M. Gursky and J. Viaclovsky, we also give a completely different, more direct and natural, proof of the main sphere theorem, and discuss further some related constructions of metrics with constant Q-curvature.

Cet article présente les idées, les outils et les résultats qui ont permis à Chang S.-Y. A., M. Gursky et Yang P. de donner une caractérisation intégrale conforme de la sphère standard en dimension 4. Nous démarrons avec une généralisation à cette dimension de la formule de Polyakov pour les déterminants régularisés, que nous utilisons ensuite pour résoudre des problèmes du type “Yamabe” pour des polynômes quadratiques en la courbure de Ricci. Nous introduisons au passage le concept de paire conforme, en particulier l’opérateur (du quatrième ordre) de Paneitz et sa courbure Q associée, et nous discutons leurs relations à la géométrie conforme classique. On trouvera aussi une preuve d’un esprit différent du théorème principal : beaucoup plus courte et naturelle, elle généralise un argument dû à M. Gursky et J. Viaclovsky qui l’a largement inspirée. On y donne enfin quelques constructions de métriques de courbure Q constante, conséquence des arguments développés précédemment.

Classification:  53C21,  53C20,  58J60,  58J05,  35J60
Keywords: conformal geometry, dimension 4, pinching theorem, sphere theorem, conformal pairs, Paneitz operator, Q-curvature
@incollection{SB_2004-2005__47__415_0,
     author = {Margerin, Christophe},
     title = {G\'eom\'etrie conforme en dimension $4$ : ce que l'analyse nous apprend},
     booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {307},
     year = {2006},
     note = {talk:950},
     pages = {415-468},
     zbl = {1184.53045},
     mrnumber = {2296426},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2004-2005__47__415_0}
}
Margerin, Christophe. Géométrie conforme en dimension $4$ : ce que l’analyse nous apprend, in Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Talk no. 950, pp. 415-468. http://www.numdam.org/item/SB_2004-2005__47__415_0/

[A] D. R. Adams - “A sharp inequality of J. Moser for higher order derivatives”, Ann. of Math. (2) 128 (1988), no. 2, p. 385-398. | MR 960950 | Zbl 0672.31008

[CGY0] S.-Y. A. Chang, M. J. Gursky & P. C. Yang - “Regularity of a fourth order nonlinear PDE with critical exponent”, Amer. J. Math. 121 (1999), no. 2, p. 215-257. | MR 1680337 | Zbl 0921.35032

[CGY1] -, “An a priori estimate for a fully nonlinear equation on four-manifolds”, J. Anal. Math. 87 (2002), p. 151-186. | Article | MR 1945280 | Zbl 1067.58028

[CGY2] -, “An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature”, Ann. of Math. (2) 155 (2002), no. 3, p. 709-787. | MR 1923964 | Zbl 1031.53062

[CGY3] -, “A conformally invariant sphere theorem in four dimensions”, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, p. 105-143. | Numdam | MR 2031200 | Zbl 1066.53079

[CQ] S.-Y. A. Chang & J. Qing - “The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set”, J. Funct. Anal. 147 (1997), no. 2, p. 363-399. | MR 1454486 | Zbl 0914.58040

[CY] S.-Y. A. Chang & P. C. Yang - “Extremal metrics of zeta function determinants on 4-manifolds”, Ann. of Math. (2) 142 (1995), no. 1, p. 171-212. | MR 1338677 | Zbl 0842.58011

[G1] M. J. Gursky - “The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics”, Ann. of Math. (2) 148 (1998), no. 1, p. 315-337. | MR 1652920 | Zbl 0949.53025

[G2] -, “The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE”, Comm. Math. Phys. 207 (1999), no. 1, p. 131-143. | MR 1724863 | Zbl 0988.58013

[GV] M. J. Gursky & J. A. Viaclovsky - “A fully nonlinear equation on four-manifolds with positive scalar curvature”, J. Differential Geom. 63 (2003), no. 1, p. 131-154. | MR 2015262 | Zbl 1070.53018

[GW] P. Guan & G. Wang - “Local estimates for a class of fully nonlinear equations arising from conformal geometry”, Int. Math. Res. Not. (2003), no. 26, p. 1413-1432. | MR 1976045 | Zbl 1042.53021

[K] O. Kobayashi - “Scalar curvature of a metric with unit volume”, Math. Ann. 279 (1987), no. 2, p. 253-265. | MR 919505 | Zbl 0611.53037

[KMPS] N. Korevaar, R. Mazzeo, F. Pacard & R. Schoen - “Refined asymptotics for constant scalar curvature metrics with isolated singularities”, Invent. Math. 135 (1999), no. 2, p. 233-272. | MR 1666838 | Zbl 0958.53032

[L] Y. Y. Li - “Degree theory for second order nonlinear elliptic operators and its applications”, Comm. Partial Differential Equations 14 (1989), no. 11, p. 1541-1578. | MR 1026774 | Zbl 0702.35094

[LL] A. Li & Y. Li - “On some conformally invariant fully nonlinear equations”, Comm. Pure Appl. Math. 56 (2003), no. 10, p. 1416-1464. | MR 1988895 | Zbl 1155.35353

[M] C. Margerin - “A sharp characterization of the smooth 4-sphere in curvature terms”, Comm. Anal. Geom. 6 (1998), no. 1, p. 21-65. | MR 1619838 | Zbl 0966.53022

[S] R. M. Schoen - “Analytic aspects of the harmonic map problem”, in Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, p. 321-358. | MR 765241 | Zbl 0551.58011

[SU] R. Schoen & K. Uhlenbeck - “A regularity theory for harmonic maps”, J. Differential Geom. 17 (1982), no. 2, p. 307-335. | MR 664498 | Zbl 0521.58021

[SY] J.-P. Sha & D. Yang - “Positive Ricci curvature on compact simply connected 4-manifolds”, in Differential geometry : Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, p. 529-538. | MR 1216644 | Zbl 0788.53029

[Y] D. Yang - L p pinching and compactness theorems for compact Riemannian manifolds”, Forum Math. 4 (1992), no. 3, p. 323-333. | MR 1164099 | Zbl 0753.53027

[ABKS] K. Akutagawa, B. Botvinnik, O. Kobayashi & H. Seshadri - “The Weyl functional near the Yamabe invariant”, J. Geom. Anal. 13 (2003), no. 1, p. 1-20. | MR 1967032 | Zbl 1048.53020

[Be] W. Beckner - “Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality”, Ann. of Math. (2) 138 (1993), no. 1, p. 213-242. | MR 1230930 | Zbl 0826.58042

[BØ] T. P. Branson & B. Ørsted - “Explicit functional determinants in four dimensions”, Proc. Amer. Math. Soc. 113 (1991), no. 3, p. 669-682. | MR 1050018 | Zbl 0762.47019

[CY2] S.-Y. A. Chang & P. C. Yang - “Non-linear partial differential equations in conformal geometry”, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, p. 189-207. | MR 1989185 | Zbl 1036.53024

[FG1] C. Fefferman & C. R. Graham - “Conformal invariants”, Astérisque (1985), Numéro Hors Série, p. 95-116. | Numdam | MR 837196 | Zbl 0602.53007

[FG2] -, Q-curvature and Poincaré metrics”, Math. Res. Lett. 9 (2002), no. 2-3, p. 139-151. | MR 1909634 | Zbl 1016.53031

[FH] C. Fefferman & K. Hirachi - “Ambient metric construction of Q-curvature in conformal and CR geometries”, Math. Res. Lett. 10 (2003), no. 5-6, p. 819-831. | MR 2025058 | Zbl 1166.53309

[FP] P. M. Fitzpatrick & J. Pejsachowicz - “An extension of the Leray-Schauder degree for fully nonlinear elliptic problems”, in Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, p. 425-438. | MR 843576 | Zbl 0628.47039

[GJMS] C. R. Graham, R. Jenne, L. J. Mason & G. A. J. Sparling - “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc. (2) 46 (1992), no. 3, p. 557-565. | MR 1190438 | Zbl 0726.53010

[GP] A. R. Gover & L. J. Peterson - “Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus”, Comm. Math. Phys. 235 (2003), no. 2, p. 339-378. | MR 1969732 | Zbl 1022.58014

[GV2] M. J. Gursky & J. A. Viaclovsky - “Fully nonlinear equations on Riemannian manifolds with negative curvature”, Indiana Univ. Math. J. 52 (2003), no. 2, p. 399-419. | MR 1976082 | Zbl 1036.53025

[GZ] C. R. Graham & M. Zworski - “Scattering matrix in conformal geometry”, Invent. Math. 152 (2003), no. 1, p. 89-118. | MR 1965361 | Zbl 1030.58022

[OPS1] B. Osgood, R. Phillips, & P. Sarnak - “Compact isospectral sets of surfaces”, J. Funct. Anal. 80 (1988), no. 1, p. 212-234. | MR 960229 | Zbl 0653.53021

[OPS2] -, “Extremals of determinants of Laplacians”, J. Funct. Anal. 80 (1988), no. 1, p. 148-211. | MR 960228 | Zbl 0653.53022