The reconstruction theorem = reg
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1981-1982), Exposé no. 9, 32 p.
@article{SEDP_1981-1982____A8_0,
     author = {Bj\"ork, J. E.},
     title = {The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:9},
     pages = {1--32},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1981-1982},
     zbl = {0507.58040},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_1981-1982____A8_0/}
}
TY  - JOUR
AU  - Björk, J. E.
TI  - The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:9
PY  - 1981-1982
SP  - 1
EP  - 32
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://archive.numdam.org/item/SEDP_1981-1982____A8_0/
LA  - en
ID  - SEDP_1981-1982____A8_0
ER  - 
%0 Journal Article
%A Björk, J. E.
%T The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:9
%D 1981-1982
%P 1-32
%I Ecole Polytechnique, Centre de Mathématiques
%U http://archive.numdam.org/item/SEDP_1981-1982____A8_0/
%G en
%F SEDP_1981-1982____A8_0
Björk, J. E. The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1981-1982), Exposé no. 9, 32 p. http://archive.numdam.org/item/SEDP_1981-1982____A8_0/

[1] Kashiwara, M. and Kawai, T., On the holonomic systems of linear differential equations. III. Publ. RIMS (1979)

[2] Kashiwara, M. and Kawai,T. The theory of holonomic systems with regular singularities and its relevance to physical problems. Proc. of Les Houches Coll. Lecture Notes in Physics 126 (1980). | MR | Zbl

[3] Kashiwara, M. and Oshima T. Systems of differential équations and their boundary value problems. Ann. of Math. 106 p.145-200 (1977) | MR | Zbl

[4] Kashiwara, M. Exposé 19 au séminaire Goulaouio-Schwarz. 1979-1980 | Numdam | MR

[5] Kashiwara, M. Holonomic systems II. Inventiones Math.

[6] Kashiwara,M., On the maximally over-determined systems of linear differental équations II. Publ.RIMS Kyoto Univ. 10 563-579 (1975) | MR | Zbl

[7] Mebkhout,Z. Thèse d' Etat. Université de Paris VII (1979)

[8] Mebkhout, Z., Sur le probleme de Hilbert-Riemann. Proc. of Les Houches Coll Lecture Notes in Physics. 126 (1980). | MR | Zbl

[9] Ramis, J.P., Bulletin de la Société Mathématique de France 108 (341-364) 1980. | Numdam | MR | Zbl

[10] Verdier, J.L. Classe d'homologie associe a un cycle. Sem. Douady-Verdier Astérisque 36-37 101-151 (1976) | Numdam | MR | Zbl

[11] Brylinsky, J.L. Modules holonomes a singularités réguliers et filtration de Hodge. I and II. Preprint. Ecole Polytechnique (1981-82)

[12] Björk,J-E. Rings of Differential operators. North Holland Math. Libr. Series. Vol21 (1979) | MR | Zbl

[13] Nilsson,N. Some growth and ramifivationn properties of certain integrals on algebraic manifolds. Arkiv för Matematik 5463-475 (1965) | Zbl

[14] Nilsson, Nr., Honodromy and asymptotic properties of certain multiple integrals Ibid. vol. 18 (181-198) (1980). | MR | Zbl