The reconstruction theorem = reg
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1981-1982), Exposé no. 9, 32 p.
@article{SEDP_1981-1982____A8_0,
     author = {Bj\"ork, Jan Erik},
     title = {The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:9},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1981-1982},
     zbl = {0507.58040},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_1981-1982____A8_0/}
}
TY  - JOUR
AU  - Björk, Jan Erik
TI  - The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:9
PY  - 1981-1982
DA  - 1981-1982///
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://archive.numdam.org/item/SEDP_1981-1982____A8_0/
UR  - https://zbmath.org/?q=an%3A0507.58040
LA  - en
ID  - SEDP_1981-1982____A8_0
ER  - 
Björk, J. E. The reconstruction theorem $\mathcal {M}^\infty =\mathcal {E}^\infty \otimes _\mathcal {E} \mathcal {M}_{reg}$. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1981-1982), Exposé no. 9, 32 p. http://archive.numdam.org/item/SEDP_1981-1982____A8_0/

[1] Kashiwara, M. and Kawai, T., On the holonomic systems of linear differential equations. III. Publ. RIMS (1979)

[2] Kashiwara, M. and Kawai,T. The theory of holonomic systems with regular singularities and its relevance to physical problems. Proc. of Les Houches Coll. Lecture Notes in Physics 126 (1980). | MR 579739 | Zbl 0459.70013

[3] Kashiwara, M. and Oshima T. Systems of differential équations and their boundary value problems. Ann. of Math. 106 p.145-200 (1977) | MR 482870 | Zbl 0358.35073

[4] Kashiwara, M. Exposé 19 au séminaire Goulaouio-Schwarz. 1979-1980 | Numdam | MR 600704

[5] Kashiwara, M. Holonomic systems II. Inventiones Math.

[6] Kashiwara,M., On the maximally over-determined systems of linear differental équations II. Publ.RIMS Kyoto Univ. 10 563-579 (1975) | MR 370665 | Zbl 0313.58019

[7] Mebkhout,Z. Thèse d' Etat. Université de Paris VII (1979)

[8] Mebkhout, Z., Sur le probleme de Hilbert-Riemann. Proc. of Les Houches Coll Lecture Notes in Physics. 126 (1980). | MR 579742 | Zbl 0444.32003

[9] Ramis, J.P., Bulletin de la Société Mathématique de France 108 (341-364) 1980. | Numdam | MR 606280 | Zbl 0464.32005

[10] Verdier, J.L. Classe d'homologie associe a un cycle. Sem. Douady-Verdier Astérisque 36-37 101-151 (1976) | MR 447623 | Zbl 0346.14005

[11] Brylinsky, J.L. Modules holonomes a singularités réguliers et filtration de Hodge. I and II. Preprint. Ecole Polytechnique (1981-82)

[12] Björk,J-E. Rings of Differential operators. North Holland Math. Libr. Series. Vol21 (1979) | MR 549189 | Zbl 0499.13009

[13] Nilsson,N. Some growth and ramifivationn properties of certain integrals on algebraic manifolds. Arkiv för Matematik 5463-475 (1965) | Zbl 0168.42004

[14] Nilsson, Nr., Honodromy and asymptotic properties of certain multiple integrals Ibid. vol. 18 (181-198) (1980). | MR 608335 | Zbl 0483.32008