@article{SEDP_1988-1989____A22_0, author = {Bahri, A. and Rabinowitz, P. H.}, title = {Periodic solutions of some problems of $3$-body type}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:21}, pages = {1--11}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1988-1989}, mrnumber = {1032297}, zbl = {0704.58041}, language = {en}, url = {http://archive.numdam.org/item/SEDP_1988-1989____A22_0/} }
TY - JOUR AU - Bahri, A. AU - Rabinowitz, P. H. TI - Periodic solutions of some problems of $3$-body type JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:21 PY - 1988-1989 SP - 1 EP - 11 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1988-1989____A22_0/ LA - en ID - SEDP_1988-1989____A22_0 ER -
%0 Journal Article %A Bahri, A. %A Rabinowitz, P. H. %T Periodic solutions of some problems of $3$-body type %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:21 %D 1988-1989 %P 1-11 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1988-1989____A22_0/ %G en %F SEDP_1988-1989____A22_0
Bahri, A.; Rabinowitz, P. H. Periodic solutions of some problems of $3$-body type. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1988-1989), Talk no. 21, 11 p. http://archive.numdam.org/item/SEDP_1988-1989____A22_0/
[1] Les méthods nouvelles de la mécanique céleste, Lib. Albert Blanchard, Paris, 1987.
,[2] Periodic solutions of Hamiltonian systems of 3-body type, in progress. | Numdam | Zbl
and[3] Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis, T.M.A., 12, (1988), 259-270. | MR | Zbl
,[4] A minimax method for a class of Hamiltonian systems with singular potentials, J. Functional Anal., 82, (1989), 412-428. | MR | Zbl
and ,[6] Differential Topology, Springer-Verlag 1975. | MR | Zbl
,[7] Critical points at infinity in some variational problems, to appear, Pitman Research Notes in Mathematics. | MR | Zbl
,[8] The homology theory of the closed geodesic problem, J. Diff. Geom. 11, (1976), 633-644. | MR | Zbl
and ,