Radiation conditions and scattering theory for N-particle quantum systems
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 1, 14 p.
@article{SEDP_1991-1992____A1_0,
     author = {Yafaev, D.},
     title = {Radiation conditions and scattering theory for $N$-particle quantum systems},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:1},
     pages = {1--14},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1991-1992},
     mrnumber = {1226480},
     zbl = {0771.35041},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_1991-1992____A1_0/}
}
TY  - JOUR
AU  - Yafaev, D.
TI  - Radiation conditions and scattering theory for $N$-particle quantum systems
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:1
PY  - 1991-1992
SP  - 1
EP  - 14
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://archive.numdam.org/item/SEDP_1991-1992____A1_0/
LA  - en
ID  - SEDP_1991-1992____A1_0
ER  - 
%0 Journal Article
%A Yafaev, D.
%T Radiation conditions and scattering theory for $N$-particle quantum systems
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:1
%D 1991-1992
%P 1-14
%I Ecole Polytechnique, Centre de Mathématiques
%U http://archive.numdam.org/item/SEDP_1991-1992____A1_0/
%G en
%F SEDP_1991-1992____A1_0
Yafaev, D. Radiation conditions and scattering theory for $N$-particle quantum systems. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 1, 14 p. http://archive.numdam.org/item/SEDP_1991-1992____A1_0/

[1] L.D. Faddeev, Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory, Trudy MIAN 69, 1963. (Russian) | MR | Zbl

[2] J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three body problem, Ann. Inst. H.Poincaré, A 21(1974), 97-145. | EuDML | Numdam | MR | Zbl

[3] L.E. Thomas, Asymptotic completeness in two- and three-particle quantum mechanical scattering, Ann. Phys. 90 (1975), 127-165. | MR

[4] K. Hepp, On the quantum-mechanical N-body problem, Helv. Phys. Acta 42(1969), 425-458. | MR

[5] I.M. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems, Springer Lecture Notes in Math. 1011, 1983. | MR | Zbl

[6] R.J. Iorio and M. O'Carrol, Asymptotic completeness for multi-particle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys. 27(1972), 137-145. | MR

[7] T. Kato, Smooth operators and commutators, Studia Math. 31(1968), 535-546. | EuDML | MR | Zbl

[8] R. Lavine, Commutators and scattering theory I: Repulsive interactions, Comm. Math. Phys. 20(1971), 301-323. | MR | Zbl

[9] R. Lavine, Completeness of the wave operators in the repulsive N-body problem, J. Math. Phys. 14 (1973), 376-379. | MR | Zbl

[10] I.M. Sigal and A. Soffer, The N-particle scattering problem: Asymptotic completeness for short-range systems, Ann. Math. 126(1987), 35-108. | MR | Zbl

[11] G.M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof, Comm. Math. Phys. 132 (1990), 73-101. | MR | Zbl

[12] V. Enss, Completeness of three-body quantum scattering, in: Dynamics and processes, P. Blanchard and L. Streit, eds., Springer Lecture Notes in Math. 103 (1983), 62-88. | MR | Zbl

[13] T. Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162 (1966), 258-279. | MR | Zbl

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Academic Press, 1979. | MR | Zbl

[15] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations, Math. Notes, Princeton Univ. Press, 1982. | MR | Zbl

[16] E. Mourre, Absence of singular spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981), 391-400. | MR | Zbl

[17] P. Perry, I.M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators, Ann. Math. 144 (1981), 519-567. | MR | Zbl

[18] R. Froese, I. Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), 1075-1085. | MR | Zbl

[19] D.R. Yafaev, Remarks on spectral theory for the Schrödinger operator of multiparticle type, Notes of Sci. Seminars of LOMI 133 (1984), 277-298. (Russian) | MR | Zbl

[20] Y. Saito, Spectral Representation for Schrödinger Operators with Long-Range Potentials, Springer Lecture Notes in Math. 727, 1979. | MR | Zbl