@article{SEDP_1996-1997____A13_0, author = {Zworski, Maciej}, title = {Poisson formul{\ae} for resonances.}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:13}, pages = {1--12}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {02124115}, mrnumber = {1482819}, language = {en}, url = {http://archive.numdam.org/item/SEDP_1996-1997____A13_0/} }
TY - JOUR AU - Zworski, Maciej TI - Poisson formulæ for resonances. JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:13 PY - 1996-1997 SP - 1 EP - 12 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_1996-1997____A13_0/ LA - en ID - SEDP_1996-1997____A13_0 ER -
%0 Journal Article %A Zworski, Maciej %T Poisson formulæ for resonances. %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:13 %D 1996-1997 %P 1-12 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_1996-1997____A13_0/ %G en %F SEDP_1996-1997____A13_0
Zworski, Maciej. Poisson formulæ for resonances.. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 13, 12 p. http://archive.numdam.org/item/SEDP_1996-1997____A13_0/
[1] Sh. Agmon. A perturbation theory for resonances, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1996. | EuDML | Numdam | Zbl
[2] R. Bañuelos and A. Sá Barreto. On the heat trace of Schrödinger operators, Comm. Partial Differ. Equations 20 (1995), 2153-2164. | MR | Zbl
[3] C. Bardos, J.-C. Guillot and J.V. Ralston. La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Commun. Partial Differ. Equations 7 (1982), 905–958. | Zbl
[4] V. Buslaev. Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999–1002. | MR | Zbl
[5] I. C. Gohberg and M. G. Krein. Introduction to the theory of linear nonselfadjoint operators, Translations of mathematical monographs 18, American Mathematical Society, Providence, 1969. | MR | Zbl
[6] L. Guillopé. Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C.R. Acad. Sci., Paris, Ser.I 293(1981), 601-603. | Zbl
[7] L. Guillopé and M. Zworski. Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129 (1995), 364–389. | MR | Zbl
[8] L. Guillopé and M. Zworski. Scattering asymptotics for Riemann surfaces, to appear in Ann. of Math. | MR | Zbl
[9] L. Hörmander. The analysis of linear partial differential operators II, Springer Verlag, Berlin, 1983. | MR | Zbl
[10] F. Klopp and M. Zworski. Generic simplicity of resonances, Helv.Phys. Acta. 68(1995), 531–538. | MR | Zbl
[11] P. Lax and R. Phillips. Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure App. Math. 22 (1969), 737–787. | MR | Zbl
[12] P. Lax and R. Phillips. The time delay operator and a related trace formula. in Topics in Functional Analysis. Advances in Math. Suppl. Studies 3 (1978), 197–295. | MR | Zbl
[13] R.B. Melrose. Scattering theory and the trace of the wave group, J. Func. Anal. 45 (1982), 429–440. | MR | Zbl
[14] R.B. Melrose. Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. | MR | Zbl
[15] R.B. Melrose. Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1984. | Numdam | Zbl
[16] R.B. Melrose. Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Diff. Equations 13(1988), 1431-1439. | MR | Zbl
[17] R.B. Melrose. Geometric scattering theory, Cambridge University Press, Cambridge, New York, Melbourne, 1995. | MR | Zbl
[18] R.B. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity, Invent. Math. 124(1996), 389–436. | MR | Zbl
[19] G. Perla-Menzala and T. Schonbek. Scattering frequencies for the wave equation with potential term, J. Funct. Anal. 55(1984), 297-322. | MR | Zbl
[20] W. Müller. Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math. 109 (1992), 265–305. | MR | Zbl
[21] A. Sá Barreto and Siu-Hung Tang. Existence of resonances in metric scattering, in preparation. | Zbl
[22] A. Sá Barreto and M. Zworski. Existence of resonances in three dimensions, Comm. Math. Phys. 173(2) (1995), 401–415. | MR | Zbl
[23] A. Sá Barreto and M. Zworski. Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49(1996), 1271-1280. | MR | Zbl
[24] J. Sjöstrand. A trace formula and review of some estimates for resonances, Publications du Centre de Mathématiques de l’École Polytechnique No.1153, Octobre, 1996.
[25] J. Sjöstrand. A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. | Numdam | MR | Zbl
[26] J. Sjöstrand and M. Zworski. Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769. | MR | Zbl
[27] J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles II, J. Funct. Anal. 123 (1994), 336–367. | MR | Zbl
[28] E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939
[29] G. Vodev. Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 (1992), 39–49. | MR | Zbl
[30] G. Vodev. Asymptotics of scattering poles for degenerate perturbations of the Laplacian, J. Funct. Anal. 138 (1996), 295-310. | MR | Zbl
[31] M. Zworski. Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. | MR | Zbl
[32] M. Zworski. A remark on isopolar potentials, unpublished note. | MR
[33] M. Zworski. Counting scattering poles., Proceedings of the Taniguchi International Workshop Spectral and scattering theory, M. Ikawa Ed., Marcel Dekker, New York, Basel, Hong Kong, 1994. | MR | Zbl