This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.
@article{SEDP_2001-2002____A9_0, author = {Golse, Fran\c{c}ois}, title = {New {Results} in {Velocity} {Averaging}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:9}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2001-2002}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2001-2002____A9_0/} }
TY - JOUR AU - Golse, François TI - New Results in Velocity Averaging JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:9 PY - 2001-2002 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2001-2002____A9_0/ LA - en ID - SEDP_2001-2002____A9_0 ER -
%0 Journal Article %A Golse, François %T New Results in Velocity Averaging %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:9 %D 2001-2002 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2001-2002____A9_0/ %G en %F SEDP_2001-2002____A9_0
Golse, François. New Results in Velocity Averaging. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 9, 15 p. http://archive.numdam.org/item/SEDP_2001-2002____A9_0/
[1] C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 101–118. | Numdam | MR | Zbl
[2] C. Bardos, F. Golse, C.D. Levermore, Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Commun. Pure & Appl. Math 46 (1993), 667–753. | MR | Zbl
[3] F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Royal Soc. Edinburgh 129A (1999), 19–36. | MR | Zbl
[4] F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for wave+transport systems and the Vlasov-Maxwell system, to appear in the proceedings of the IMA, Springer-Verlag. | MR
[5] F. Bouchut, F. Golse, C. Pallard, Nonresonant velocity averaging for wave+transport systems, in preparation.
[6] F. Bouchut, F. Golse, C. Pallard, Conditional regularity of solutions to the 3D Vlasov-Maxwell system, in preparation.
[7] F. Bouchut, F. Golse, M. Pulvirenti, Kinetic Equations and Asymptotic Theory, B. Perthame and L. Desvillettes eds., Series in Applied Mathematics 4, Gauthier-Villars, Paris, 2000. | MR | Zbl
[8] F. Castella, B. Perthame, Estimations de Strichartz pour les équations de transport, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 535–540. | MR | Zbl
[9] R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc. 14 (2001), 279–296. | MR | Zbl
[10] R. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729–757. | MR | Zbl
[11] R.J. DiPerna and P.-L. Lions, On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results, Annals of Math. 130 (1990), 321–366. | MR | Zbl
[12] R. DiPerna, P.-L. Lions, Y. Meyer, regularity of velocity averages Ann. Inst. H. Poincaré Anal. Non Lin. 8 (1991), 271–288. | Numdam | MR | Zbl
[13] N. Dunford, J. T. Schwartz Linear operators, part I, Interscience Publishers Inc., New York 1958. | MR | Zbl
[14] P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16, (1991), 1761–1794. | MR | Zbl
[15] P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions Comm. Pure Appl. Math. 45 (1992), 1–26. | MR | Zbl
[16] R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), 59–90. | MR | Zbl
[17] R. Glassey, W. Strauss, High Velocity Particles in a Collisionless Plasma, Math. Meth. Appl. Sci. 9 (1987), 46–52. | MR | Zbl
[18] R. Glassey, W. Strauss, Absence of Schocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys. 113 (1987), 191–208. | MR | Zbl
[19] F. Golse Quelques résultats de moyennisation pour les équations aux dérivées partielles in Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue, 101–123 (1989). | MR | Zbl
[20] F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the Moments of the Solution of a Transport Equation, J. Funct. Anal. 76 (1988), 110–125. | MR | Zbl
[21] F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l’opérateur de transport, C.R. Acad. Sci. Paris série I 301 (1985), 341–344. | Zbl
[22] F. Golse, L. Saint-Raymond, Velocity averaging in for the transport equation C.R. Acad. Sci. Paris, Sér. I 334 (2002), 557–562. | MR | Zbl
[23] F. Golse, L. Saint-Raymond, The Navier-Stokes limit for the Boltzmann equation: convergence proof, preprint; & C.R. Acad. Sci. Paris série I 333 (2001), 897–902. | MR | Zbl
[24] D. Hilbert, Begründung der kinetischen Gastheorie, Math. Annalen 72 (1912), 562–578. | MR
[25] S. Klainerman, G. Staffilani, A new approach to the Maxwell Vlasov equations, preprint.
[26] L. Landau, E. Lifshitz, Cours de physique théorique. Vol. 2: Théorie des champs, Editions Mir, Moscou, 1970.
[27] J.-L. Lions, Théorèmes de trace et d’interpolation I, II, Ann. Scuola Norm. di Pisa 13 (1959), pp. 389–403, 14 (1960), pp. 317–331. | Numdam | Zbl
[28] P.-L. Lions Régularité optimale des moyennes en vitesse, C. R. Acad. Sci. Paris Série I 320 (1995), 911–915 & C. R. Acad. Sci. Paris Série I 326 (1998), 945–948. | MR | Zbl
[29] P.-A. Meyer; Probabilités et potentiel, Hermann, Paris 1966. | MR | Zbl
[30] P.-L. Lions, T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, (1993), 553–618. | MR | Zbl
[31] B. Perthame, Global Existence to the BGK Model of the Boltzmann Equation, J. Diff. Eq. 82 (1989), 191–205. | MR | Zbl
[32] B. Perthame, P. Souganidis, A limiting case for velocity averaging, Ann. Scient. Ecole Normale Sup. 4ème série 31, (1998), 591–598. | Numdam | MR | Zbl
[33] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), 281–303. | MR | Zbl
[34] L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations 27 (2002), 149–185. | MR | Zbl
[35] C. Villani, Limites hydrodynamiques de l’équation de Boltzmann [d’après C. Bardos, F. Golse, D. Levermore, P.-L. Lions, N. Masmoudi, L. Saint-Raymond], Séminaire Bourbaki, vol. 2000-2001, Exp. 893. | Numdam