@article{SEDP_2002-2003____A22_0, author = {Colombini, Ferrucio and Luo, Tao and Rauch, Jeffrey}, title = {Uniqueness and {Nonuniqueness} for {Nonsmooth} {Divergence} {Free} {Transport}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:22}, pages = {1--21}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {1065.35089}, mrnumber = {2030717}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2002-2003____A22_0/} }
TY - JOUR AU - Colombini, Ferrucio AU - Luo, Tao AU - Rauch, Jeffrey TI - Uniqueness and Nonuniqueness for Nonsmooth Divergence Free Transport JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:22 PY - 2002-2003 SP - 1 EP - 21 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2002-2003____A22_0/ LA - en ID - SEDP_2002-2003____A22_0 ER -
%0 Journal Article %A Colombini, Ferrucio %A Luo, Tao %A Rauch, Jeffrey %T Uniqueness and Nonuniqueness for Nonsmooth Divergence Free Transport %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:22 %D 2002-2003 %P 1-21 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2002-2003____A22_0/ %G en %F SEDP_2002-2003____A22_0
Colombini, Ferrucio; Luo, Tao; Rauch, Jeffrey. Uniqueness and Nonuniqueness for Nonsmooth Divergence Free Transport. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 22, 21 p. http://archive.numdam.org/item/SEDP_2002-2003____A22_0/
[1] M. Aizenman, On vector fields as generators of flows: a counterexample to Nelson’s conjecture, Ann. Math. 107 (1978), 287-296. | Zbl
[2] G. Alberti, Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 239-274. | MR | Zbl
[3] L. Ambrosio, Transport equation and Cauchy problem for vector fields, preprint Scuola Norm. Sup. Pisa, March 2003. | MR | Zbl
[4] M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Birkhäuser, Boston, 1989. | MR | Zbl
[5] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal. 157 (2001), 75-90. | MR | Zbl
[6] F. Bouchut, F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal. 32 (1998), 891-933. | MR | Zbl
[7] F. Colombini, N. Lerner, Uniqueness of continuous solutions for vector fields, Duke Math. J. 111 (2002), 357-384. | MR | Zbl
[8] F. Colombini, N. Lerner, Sur les champs de vecteurs peu réguliers, Séminaire E.D.P., Ecole Polytechnique, 2000-2001, XIV 1-15. | Numdam | MR
[9] F. Colombini, N. Lerner, Uniqueness of solutions for a class of conormal vector fields, Preprint Univ. Rennes 1, February 2003. | MR | Zbl
[10] N. Depauw, Non unicité des solutions bornées pour un champ de vecteurs en dehors d’un hyperplan, C.R.Acad.Sci.Paris Sér.I Math. to appear. | Zbl
[11] R.J. Di Perna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | MR | Zbl
[12] P.-L. Lions, Sur les équations différentielles ordinaires et les équations de transport, C.R.Acad.Sci.Paris Sér.I Math. 326 (1998), 833-838. | MR | Zbl
[13] E. Nelson, Les écoulements incompressibles d’énergie finie, Les Equations aux Dérivées Partielles (Paris 1962), Colloques Internationaux du C.N.R.S., 117 (1963), 159-165. | Zbl
[14] G. Petrova, B. Popov, Linear transport equations with discontinuous coefficients, Comm. PDE 24 (1999), 1849-1873. | MR | Zbl
[15] F. Poupaud, M. Rascle, Measure solutions to the linear multi- dimensional transport equation with non-smooth coefficients, Comm. PDE 22 (1997), 337-358. | MR | Zbl