@article{SEDP_2002-2003____A3_0, author = {Vasseur, Alexis}, title = {Interface cin\'etique / fluide~: {Un} mod\`ele simplifi\'e}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:3}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {02124129}, mrnumber = {2030698}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2002-2003____A3_0/} }
TY - JOUR AU - Vasseur, Alexis TI - Interface cinétique / fluide : Un modèle simplifié JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:3 PY - 2002-2003 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2002-2003____A3_0/ LA - fr ID - SEDP_2002-2003____A3_0 ER -
%0 Journal Article %A Vasseur, Alexis %T Interface cinétique / fluide : Un modèle simplifié %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:3 %D 2002-2003 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2002-2003____A3_0/ %G fr %F SEDP_2002-2003____A3_0
Vasseur, Alexis. Interface cinétique / fluide : Un modèle simplifié. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 3, 15 p. http://archive.numdam.org/item/SEDP_2002-2003____A3_0/
[1] First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, Volume 4 (1979) no. 9, pp. 1017-1034 | MR | Zbl
[2] Coupling one-dimensional time-dependent classical and quantum transport models, J. Math. Phys., Volume 43 (2002) no. 1, pp. 1-24 | MR | Zbl
[3] Entropy inequalities for evaporation/condensation problem in rarefied gas dynamics, J. Statist. Phys., Volume 102 (2001) no. 5-6, pp. 1151-1176 | MR | Zbl
[4] Transmission boundary conditions in a model-kinetic decomposition domain, Discrete Contin. Dyn. Syst. Ser. B, Volume 2 (2002) no. 1, pp. 69-94 | MR | Zbl
[5] Coupling Boltzmann and Euler equations without overlapping, Domain decomposition methods in science and engineering (Como, 1992) (Contemp. Math.), Volume 157, Amer. Math. Soc., Providence, RI, 1994, pp. 377-398 | MR | Zbl
[6] Une application de la symétrisation de Steiner aux équations hyperboliques : la méthode de transport et écroulement, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981) no. 11, pp. 563-566 | MR | Zbl
[7] Résolution d’équations d’évolution quasilinéaires en dimension d’espace à l’aide d’équations linéaires en dimension , J. Differential Equations, Volume 50 (1983) no. 3, pp. 375-390 | Zbl
[8] A classification of well-posed kinetic layer problems, Comm. Pure Appl. Math., Volume 41 (1988) no. 4, pp. 409-435 | MR | Zbl
[9] Kinetic boundary layers and fluid-kinetic coupling in semiconductors, Transport Theory Statist. Phys., Volume 28 (1999) no. 1, pp. 31-55 | MR | Zbl
[10] Personal Communication
[11] One-sided difference approximations for nonlinear conservation laws, Math. Comp., Volume 36 (1981) no. 154, pp. 321-351 | MR | Zbl
[12] A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J., Volume 50 (1983) no. 2, pp. 505-515 | MR | Zbl
[13] Shock profiles for the Perthame-Tadmor kinetic model, Comm. Partial Differential Equations, Volume 23 (1998) no. 11-12, pp. 1857-1874 | MR | Zbl
[14] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 7, pp. 341-344 | MR | Zbl
[15] Domain decomposition for kinetic problems with nonequilibrium states, European J. Mech. B Fluids, Volume 15 (1996) no. 2, pp. 203-216 | MR | Zbl
[16] Coupling Boltzmann and Navier-Stokes equations by half fluxes, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 51-67 | MR | Zbl
[17] A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., Volume 7 (1994) no. 1, pp. 169-191 | MR | Zbl
[18] Boundary conditions for scalar conservation laws from a kinetic point of view, J. Statist. Phys., Volume 94 (1999) no. 5-6, pp. 779-804 | MR | Zbl
[19] A limiting case for velocity averaging, Ann. Sci. École Norm. Sup. (4), Volume 31 (1998) no. 4, pp. 591-598 | EuDML | Numdam | MR | Zbl
[20] An introduction to kinetic schemes for gas dynamics, An introduction to recent developments in theory and numerics for conservation laws (Freiburg/Littenweiler, 1997) (Lect. Notes Comput. Sci. Eng.), Volume 5, Springer, Berlin, 1999, pp. 1-27 | MR | Zbl
[21] A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., Volume 136 (1991) no. 3, pp. 501-517 | MR | Zbl
[22] Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers, Asymptotic Anal., Volume 4 (1991) no. 4, pp. 293-317 | MR | Zbl
[23] Cylindrical Couette flows of a rarefied gas with evaporation and condensation : reversal and bifurcation of flows, Phys. Fluids, Volume 11 (1999) no. 2, pp. 476-490 | MR | Zbl
[24] Oral communication
[25] Time regularity for the system of isentropic gas dynamics with ., Commun. Partial Differ. Equations, Volume 24 (1999) no. 11-12, pp. 1987-1997 | MR | Zbl
[26] Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with ., Indiana Univ. Math. J., Volume 48 (1999) no. 1, pp. 347-364 | MR | Zbl
[27] Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 3, pp. 181-193 | MR | Zbl