This paper is devoted to the description of our recent results on the spectral behavior of one-dimensional adiabatic quasi-periodic Schrödinger operators. The specific operator we study is a slow periodic perturbation of an incommensurate periodic Schrödinger operator, and we are interested in energies where the perturbation creates a strong interaction between two consecutive bands of the background periodic operator. We describe the location of the spectrum and its nature and discuss the various new resonance phenomena due to the interaction of the spectral bands of the unperturbed periodic operator.
Dans cet article, nous décrivons nos résultats récents sur la théorie spectrale d’une classe d’opérateurs de Schrödinger quasi-périodiques adiabatiques sur la droite réelle. Ces opérateurs sont des perturbations périodiques lentes d’opérateurs périodiques. Nous étudions le spectre à des énergies auxquelles la perturbation lente crée une interaction forte entre deux bandes spectrales consécutives de l’opérateur périodique non perturbé. Nous décrivons le lieu et la nature du spectre ; nous nous intéressons plus particulièrement à différents phénomènes de résonance engendrés par l’interaction entre les bandes spectrales de l’opérateur périodique non perturbé.
@article{SEDP_2003-2004____A8_0, author = {Fedotov, Alexandre and Klopp, Fr\'ed\'eric}, title = {Op\'erateurs de {Schr\"odinger} quasi-p\'eriodiques adiabatiques~: {Interactions} entre les bandes spectrales d{\textquoteright}un op\'erateur p\'eriodique}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:8}, pages = {1--23}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2003-2004}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2003-2004____A8_0/} }
TY - JOUR AU - Fedotov, Alexandre AU - Klopp, Frédéric TI - Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:8 PY - 2003-2004 SP - 1 EP - 23 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2003-2004____A8_0/ LA - fr ID - SEDP_2003-2004____A8_0 ER -
%0 Journal Article %A Fedotov, Alexandre %A Klopp, Frédéric %T Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:8 %D 2003-2004 %P 1-23 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2003-2004____A8_0/ %G fr %F SEDP_2003-2004____A8_0
Fedotov, Alexandre; Klopp, Frédéric. Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2003-2004), Exposé no. 8, 23 p. http://archive.numdam.org/item/SEDP_2003-2004____A8_0/
[1] J. Avron and B. Simon. Almost periodic Schrödinger operators, II. the integrated density of states. Duke Mathematical Journal, 50 :369–391, 1983. | MR | Zbl
[2] V. Buslaev and A. Fedotov. Bloch solutions of difference equations. St Petersburg Math. Journal, 7 :561–594, 1996. | MR | Zbl
[3] M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. | Zbl
[4] A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the non-resonant case. In progress.
[5] A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the resonant case. In progress.
[6] A. Fedotov and F. Klopp. A complex WKB analysis for adiabatic problems. Asymptotic Analysis, 27 :219–264, 2001. | MR | Zbl
[7] A. Fedotov and F. Klopp. On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Preprint, Université Paris-Nord, 2001. | MR | Zbl
[8] A. Fedotov and F. Klopp. On the singular spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. To appear in Ann. H. Poincaré, 2004. | Zbl
[9] A. Fedotov and F. Klopp. Geometric tools of the adiabatic complex WKB method. To appear in Asymp. Anal, 2004. | MR | Zbl
[10] A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1) :1–92, 2002. | MR | Zbl
[11] N. E. Fisova. On the global quasimomentum in solid state physics. In Mathematical methods in physics (Londrina, 1999), pages 98–141. World Sci. Publishing, River Edge, NJ, 2000. | MR | Zbl
[12] E. M. Harrell. Double wells. Comm. Math. Phys., 75(3) :239–261, 1980. | MR | Zbl
[13] B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit I. Communications in Partial Differential Equations, 9 :337–408, 1984. | MR | Zbl
[14] A. R. It.s and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional. Anal. i Priložen., 9(1) :69–70, 1975. | MR | Zbl
[15] Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math., 135(2) :329–367, 1999. | MR | Zbl
[16] H. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30 :217–274, 1975. | Zbl
[17] H. P. McKean and E. Trubowitz. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2) :143–226, 1976. | Zbl
[18] L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. | MR | Zbl
[19] B. Simon. Instantons, double wells and large deviations. Bull. Amer. Math. Soc. (N.S.), 8(2) :323–326, 1983. | MR | Zbl