Regularity of weak solutions for a class of infintely degenerate elliptic semilinear equation
Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 7, 14 p.
@article{SEDP_2003-2004____A7_0,
     author = {Morimoto, Yoshinori and Xu, Chao-Jiang},
     title = {Regularity of weak solutions for a class of infintely degenerate elliptic semilinear equation},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2003-2004},
     note = {talk:7},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2003-2004____A7_0}
}
Morimoto, Yoshinori; Xu, Chao-Jiang. Regularity of weak solutions for a class of infintely degenerate elliptic semilinear equation. Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 7, 14 p. http://www.numdam.org/item/SEDP_2003-2004____A7_0/

[1] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l’École Normale Supérieure, 14 (1981), 209–246. | Numdam | Zbl 0495.35024

[2] M. Derridj, Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques, Annales de l’Institut Fourier 21 (1971), 99–148. | Numdam | Zbl 0215.45405

[3] D. Jerison, The Dirichlet problem for the Kohn-Laplacian on the Heisenberg group, Parts I and II, J. Funct. Analysis, 43 (1981), 97–142. | MR 639800 | Zbl 0493.58021

[4] H. Kumano-go, Pseudo-differential operators, MIT Press, 1982 | Zbl 0489.35003

[5] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 32, 1-76 (1985). | MR 783181 | Zbl 0568.60059

[6] Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators, Osaka J. Math. 24 (1987), 13-35. | MR 881744 | Zbl 0658.35039

[7] Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math. 24 (1987), 651-675. | MR 923880 | Zbl 0644.35023

[8] Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sc. Math. 121 (1997) , 507-547. | MR 1485327 | Zbl 0891.35025

[9] Y. Morimoto and T. Morioka, Hypoellipticity for elliptic operators with infinite degeneracy, “Partial Differential Equations and Their Applications” (Chen Hua and L. Rodino, eds.), World Sci. Publishing, River Edge, NJ, (1999), 240-259. | Zbl 0992.35026

[10] Y. Morimoto and C.-J. Xu, Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators, Astérisque 284 (2003), 245–264. | MR 2003422 | Zbl 1096.35048

[11] Y. Morimoto and C.-J. Xu, Nonlinear hypoellipticity of infinite type, Preprint, 2003. | MR 2332078

[12] C.-J. Xu, The Dirichlet problems for a class of semilinear sub-elliptic equations. Nonlinear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1039–1049. | MR 1689283 | Zbl 0942.35086

[13] C.-J. Xu, Nonlinear microlocal analysis. General theory of partial differential equations and microlocal analysis (Trieste, 1995), 155–182, Pitman Res. Notes Math. Ser., 349, Longman, Harlow, 1996. | MR 1429636 | Zbl 0861.35150

[14] C.-J. Xu, Regularity problem for quasi-linear second order subelliptic equations, Comm. Pure Appl. Math., 45 77–96 (1992). | Zbl 0827.35023

[15] C.-J. Xu and C. Zuily , Smoothness up to the boundary for solutions of the nonlinear and nonelliptic Dirichlet problem, Trans. Amer. Math. Soc., 308 (1988), 243–257. | MR 946441 | Zbl 0669.35019