The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 8, 18 p.

Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations (NS ν ) with initial data in the scaling invariant Besov space, p, -1+3 p , here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations (ANS ν ), where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, 4 -1 2,1 2 and 4 -1 2,1 2 (T). Then with initial data in the scaling invariant space 4 -1 2,1 2 , we prove the global wellposedness for (ANS ν ) provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of (ANS ν ) with high oscillatory initial data.

Chemin, Jean-Yves 1 ; Zhang, Ping 2

1 Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie Curie, 75230 Paris Cedex 05, FRANCE
2 Academy of Mathematics & Systems Science, CAS Beijing 100080, CHINA.
@article{SEDP_2005-2006____A8_0,
     author = {Chemin, Jean-Yves and Zhang, Ping},
     title = {The role of oscillations in the global wellposedness of the {3-D} incompressible anisotropic {Navier-Stokes} equations},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:8},
     pages = {1--18},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2005-2006},
     mrnumber = {2276074},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_2005-2006____A8_0/}
}
TY  - JOUR
AU  - Chemin, Jean-Yves
AU  - Zhang, Ping
TI  - The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:8
PY  - 2005-2006
SP  - 1
EP  - 18
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2005-2006____A8_0/
LA  - en
ID  - SEDP_2005-2006____A8_0
ER  - 
%0 Journal Article
%A Chemin, Jean-Yves
%A Zhang, Ping
%T The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:8
%D 2005-2006
%P 1-18
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2005-2006____A8_0/
%G en
%F SEDP_2005-2006____A8_0
Chemin, Jean-Yves; Zhang, Ping. The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 8, 18 p. http://archive.numdam.org/item/SEDP_2005-2006____A8_0/

[1] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l’École Normale Supérieure, 14, 1981, pages 209-246. | Numdam | Zbl

[2] M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles de l’École Polytechnique", Exposé VIII, 1993–1994. | Numdam | Zbl

[3] J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, 77, 1999, pages 27–50. | Zbl

[4] J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, pages 53-136. | MR | Zbl

[5] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, Preprint of CMLS, École polytechnique, 2004. | MR

[6] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Modélisation Mathématique et Analyse Numérique, 34, 2000, pages 315-335. | Numdam | MR | Zbl

[7] J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, to appear in | MR | Zbl

[8] T.-M. Fleet, Differential Analysis, Cambridge University Press, 1980. | MR | Zbl

[9] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv for Rational Mechanic Analysis, 16, 1964, pages 269–315. | MR | Zbl

[10] D. Iftimie, A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity, SIAM Journal of Mathematical Analysis, 33, 2002, pages 1483–1493. | MR | Zbl

[11] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations. Advances in Mathematics, 157, 2001, pages 22–35. | MR | Zbl

[12] M. Paicu, Equation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica Iberoamericana, 21, 2005, pages 179–235. | MR | Zbl

[13] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales de l’École Normale Supérieure, 32, 1999, pages 769-812. | Numdam | Zbl