Nous considérons dans cet article l’équation des ondes semilinéaire critique
posée dans tout l’espace , avec Shatah et Struwe [31] ont prouvé que si les données initiales sont d’énergie finie, c’est à dire si , alors il existe une solution globale. Planchon [22] a montré que c’est aussi le cas pour certaines données initiales d’énergie infinie : il suffit que les données initiales soient de norme petite dans . Nous construisons ici des solutions globales de pour des données initiales d’énergie infinie arbitrairement grandes, en utilisant deux méthodes qui reviennent à interpoler entre solutions d’énergie finie et solutions d’énergie infinie : la méthode de Bourgain et la méthode de Calderón. Ces deux méthodes donnent des résultats complémentaires.
@article{SEDP_2006-2007____A11_0, author = {Germain, Pierre}, title = {Solutions globales d{\textquoteright}\'energie infinie pour l{\textquoteright}\'equation des ondes critique}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:11}, pages = {1--31}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2006-2007}, mrnumber = {2385198}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2006-2007____A11_0/} }
TY - JOUR AU - Germain, Pierre TI - Solutions globales d’énergie infinie pour l’équation des ondes critique JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:11 PY - 2006-2007 SP - 1 EP - 31 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2006-2007____A11_0/ LA - fr ID - SEDP_2006-2007____A11_0 ER -
%0 Journal Article %A Germain, Pierre %T Solutions globales d’énergie infinie pour l’équation des ondes critique %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:11 %D 2006-2007 %P 1-31 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2006-2007____A11_0/ %G fr %F SEDP_2006-2007____A11_0
Germain, Pierre. Solutions globales d’énergie infinie pour l’équation des ondes critique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 11, 31 p. http://archive.numdam.org/item/SEDP_2006-2007____A11_0/
[1] H. Bahouri, P. Gérard, High frequency approximation of solutions to critical non linear wave equations, American Journal of Mathematics 121, 131-175 (1999) | MR | Zbl
[2] H. Bahouri, J. Shatah, Global estimate for the critical semilinear wave equation, Annales de l’Institut Henri Poincaré - Analyse non-linéaire, 15, 783-789 (1998) | Numdam | Zbl
[3] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales scientifiques de l’Ecole normale supérieure 14, 209-246 (1981) | Numdam | Zbl
[4] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications 46, American Mathematical Society, Providence, RI (1999) | MR | Zbl
[5] J.-Y. Chemin, N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Journal of Differential Equations 121 314–328 (1995) | MR | Zbl
[6] C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in , Transactions of the American Mathematical Society 318, 179-200 (1990) | MR | Zbl
[7] I. Gallagher, F. Planchon, On global infinite energy solutions to the Navier-Stokes equations, Archive for Rational and Mechanical Analysis 161, 307-337 (2002) | MR | Zbl
[8] I. Gallagher, F. Planchon, On global solutions to a defocusing semi-linear wave equation, Revista Matematica Iberoamericana 19, 161-177 (2003) | MR | Zbl
[9] P. Germain, Solutions fortes, solutions faibles d’équations aux dérivées partielles d’évolution, Thèse de l’Ecole polytechnique (2005)
[10] J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Journal of Functional Analysis 133, 50-68 (1995) | MR | Zbl
[11] J. Ginibre, G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Mathematische Zeitschrift 189, 487-505 (1985) | MR | Zbl
[12] M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Annals of Mathematics 132, 485-509 (1990) | MR | Zbl
[13] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Mathematische Zeitschrift 77, 295-308 (1961) | MR | Zbl
[14] O. Kavian, F. Weissler, Finite energy self-similar solutions of a non-linear wave equation, Communications in Partial Differential Equations 15, 1381-1420 (1990) | MR | Zbl
[15] M. Keel, T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics 120, 955-980 (1998) | MR | Zbl
[16] C. Kenig, G. Ponce, L. Vega, Global well-posedness for semi-linear wave equations, Communications in Partial Differential Equations 25, 1741-1752 (2000) | MR | Zbl
[17] G. Lebeau, Perte de régularité pour les équations d’ondes sur-critiques, Bulletin de la Société Mathématique de France 133 145-157 (2005) | Numdam | Zbl
[18] H. Lindblad, C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, Journal of Functional Analysis 130, 357-426 (1995) | MR | Zbl
[19] N. Masmoudi, F. Planchon, On uniqueness for the critical wave equation, to appear in Communications in Partial Differential Equations | MR | Zbl
[20] K. Nakanishi, Scattering theory for the non linear Klein-Gordon equation with Sobolev critical Power, International Mathematics Research Notices 1999, 31-60 | MR | Zbl
[21] H. Pecher, Self-similar and asymptotically self-similar solutions of non-linear wave equations, Mathematische Annalen 316, 259-281 (2000) | MR | Zbl
[22] F. Planchon, Self-similar solutions and semi-linear wave equations in Besov spaces, Journal de Mathématiques Pures et Appliquées IX, Sér. 79, 809-820 (2000) | MR | Zbl
[23] F. Planchon, On uniqueness for semilinear wave equations, Mathematische Zeitschrift 244, 587-599 (2003) | MR | Zbl
[24] J. Rauch, I. The Klein-Gordon equation II. Anomalous singularities for semilinear wave equations, Non-linear partial differential equations and their applications, H. Brézis and J.L. Lions eds, Research notes in Mathematics 53, 335-364, Pitman (1981) | MR | Zbl
[25] F. Ribaud, A. Youssfi, Solutions globales et solutions auto-similaires de l’équation des ondes non-linéaire, Comptes-rendus de l’Académie des Sciences de Paris 329, Série 1, 33-36 (1999) | Zbl
[26] F. Ribaud, A. Youssfi, Global solutions and self-similar solutions of semilinear wave equation, Mathematische Zeitschrift 239, 231-262 (2002) | MR | Zbl
[27] I.E. Segal, The global Cauchy problem for a relativistic vector field with power interaction, Bulletin de la Société Mathématique de France 91, 129-135 (1963) | Numdam | MR | Zbl
[28] T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications 3 Walter de Gruyter & Co., Berlin (1996) | MR | Zbl
[29] J. Shatah, M. Struwe, Regularity results for nonlinear wave equations, Annals of Mathematics 138, 503-518 (1993) | MR | Zbl
[30] J. Shatah, M. Struwe, Well-posedeness in the energy space for semilinear wave equations with critical growth, International Mathematics Research Notices 1994, 303-309 | MR | Zbl
[31] J. Shatah, M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, New-York (2000) | Zbl
[32] C. Sogge, Lectures on nonlinear wave equations, Monographs in Analysis, International Press Incorporated, Boston (1995) | MR | Zbl
[33] W. Strauss, Non linear wave equations, CBMS Regional Conference Series in Mathematics 73 (1989) | Zbl
[34] R. Strichartz, A priori estimates for the wave equation and some applications, Journal of Functional Analysis 5, 218-235 (1970) | MR | Zbl
[35] M. Struwe, Globally regular solutions to the Klein-Gordon equation, Annali della Scuola Normale Superiore di Pisa : classe di scienze IV Ser. 15, 495-513 (1988) | Numdam | MR | Zbl
[36] M. Struwe, Uniqueness for critical non-linear wave equations, Communications in Pure and Applied Mathematics LII, 1179-1188 (1999) | MR | Zbl
[37] T. Tao, Low regularity semi-linear wave equations, Communications in Partial Differential Equations 24, 599-629 (1999) | MR | Zbl